ヨッシーの八方掲示板(小中高の算数・数学 質問掲示板)
since 2008/03/25
旧数学掲示板のログ
使用上の注意は
こちら
にあります
質問される方は学年(質問する問題の対象学年)を書いて下さいね。
「答えはわかっているんですが・・・」という場合は、その答えを書いてもらえると、回答しやすいです。
過去の記事のいくつかを
こちら
に保管してあります。
HOME
|
お知らせ(3/8)
|
記事検索
|
投稿回数
|
携帯用URL
|
フィード
|
ヘルプ
|
環境設定
名前
メール
URL
件名
ファイル
文字色
■
■
■
■
■
■
■
■
設定保存
/ 編集パス
★
中学校数学
NEW
/ あめ
引用
カッコ6が分かりません。
よろしくお願いします。
No.89664 - 2024/12/23(Mon) 23:51:13
☆
Re: 中学校数学
NEW
/ IT
引用
ヒントです。まず点に名前を付けます。(下図)
互いに高さが等しい三角形の面積の比から底辺の比が分かります。
△ABC:△ADC= : から BC:DC= :
△FDC:△FEC= : から DC:EC= :
No.89665 - 2024/12/24(Tue) 00:31:43
★
高校入試
NEW
/ ゆうま
引用
(4)をお願いいたします。
No.89660 - 2024/12/23(Mon) 16:16:33
☆
Re: 高校入試
NEW
/ ヨッシー
引用
図のFHを通る線(面)で上下に分けます。
下の部分:半径3、高さ2の円錐
上の部分:半径3、高さ3の円錐から、
半径0.5、高さ0.5 の円錐を2つ引いたもの
と考えられます。
順に、
9π×2÷3=6π
9π×3÷3=9π
0.25π×0.5÷3×2=π/12
合計:6π+9π−π/12=179π/12
No.89661 - 2024/12/23(Mon) 18:15:43
★
(No Subject)
/ やり直しメン
引用
算数です
解説では速さの和を求めるのに
列車の長さの和÷27秒 としていました。
又、速さの差では
列車の長さの和÷67.5としていました。
私はこの速さの求め方がイメージしづらいと思い質問しました
No.89655 - 2024/12/23(Mon) 00:45:11
☆
Re:
/ やり直しメン
引用
写真が掲載されていなかったらまた投稿させて頂きます
No.89656 - 2024/12/23(Mon) 00:48:11
☆
Re:
NEW
/ ヨッシー
引用
列車Aが速さa、列車Bが速さbですれ違うときの時間。
列車Aが速さa+bで、止まっている列車Bの横を通過する時間。
この両者が同じことがイメージできますか?
同様に
列車Aが速さaで、列車B(速さb)を追い越すときの時間。
列車Aが速さa−bで、止まっている列車Bの横を通過する時間。
も同じです。
No.89658 - 2024/12/23(Mon) 09:56:20
★
より早い方法は?
/ 医学部志望の浪人生
引用
5544の正の約数のうち、282より大きく564より小さいものはいくつあるか。
答えは4つなのですが、自分で解いた時に素因数分解と見比べながらやってたら、1個数え忘れて3つになってしまいました。
数え忘れしにくくて早い方法を教えてください!
よろしくお願いします!
No.89646 - 2024/12/22(Sun) 18:54:15
☆
Re: より早い方法は?
/ IT
引用
n=5544/m のmの方を見つけたらどうですか?
10から19まで順に5544の約数かを調べる。
No.89647 - 2024/12/22(Sun) 19:15:05
★
解説お願いします。
/ 中学三年
引用
四角形ABCDは平行四辺形である。また、△BEC、△D CFはそれぞれ角CBE🟰90度、角FDC🟰90度の直角二等辺三角形である。AとE、AとFをそれぞれ結ぶとき問に答えよ。
(1)角ABC🟰124°のとき、角FAEを求めよ。
(2)図2のようにBEをADまで伸ばしたときの交点をGとする。角ABC🟰135°、GB:BE🟰2:5とするとき、△ABGの面積と四角形ABDFの面積の比を簡単な整数の比で表せ。
No.89642 - 2024/12/22(Sun) 10:24:04
☆
Re: 解説お願いします。
NEW
/ ヨッシー
引用
(1)
△ABEと△FDAにおいて、
AB=DC=FD
BE=BC=DA
∠ABE=∠FDA=360−90−124=146(°)
より、
△ABE≡△FDA
であり、
∠AEB=∠FAD
∠BAE=∠DFA
よって、
∠FAD+∠BAE=∠FAD+∠DFA=180−146=34(°)
以上より
∠FAE=56+34=90(°)
(2)
GB=AG=(2)
BE=BC=AD=(5)
と置きます。また、
∠ABC=135°
より
∠BAD=45°
となり、△ABGは直角二等辺三角形、△DCFはそれを2つくっつけた直角二等辺三角形となり、
CF=(4)、AD⊥FC
となります。
△ABGは直角を挟む2辺が(2)の直角三角形。
△ABDは底辺(5)、高さ(2)の三角形
△ADFも底辺(5)、高さ(2)の三角形
よって、
△ABG:四角形ABDF=2×2:5×4=1:5
No.89657 - 2024/12/23(Mon) 09:41:36
★
慶応大学過去問
/ Higashino
引用
慶応大学過去問
積分
何卒よろしくお願いします
以下問題
No.89641 - 2024/12/22(Sun) 06:30:57
☆
Re: 慶応大学過去問
/ ポテトフライ
引用
誘導通りにやるのがよいでしょう。
t=x+√(x^2+1)とおくと
(t-x)^2=x^2+1
x=t/2-1/2t
よってdx=(1/2+1/2t^2)dt,√(x^2+1)=t-x=t-t/2-1/2t=t/2+1/2t
よりCを積分定数として
与式=∫(t/2+1/2t)(1/2+1/2t^2)dt
=(t^2-1/t^2)/8+1/2*log|t|+C
=(x√(x^2+1))/2+1/2*log|x+√(x^2+1)|+C
※この積分は有名なものです。置換の仕方も含めて暗記で良いと思います。
※これはy=x^2の曲線の長さを求める積分の準備になります。
例えばx=0〜1の長さなら積分区間が[0,1]などとなります。
より詳しくは曲線の長さ、積分で検索すると出てきます。
No.89653 - 2024/12/22(Sun) 21:55:34
★
弘前大学過去問
/ Higashino
引用
弘前大学過去問
積分
何卒よろしくお願いします
以下問題
No.89640 - 2024/12/22(Sun) 06:30:16
☆
Re: 弘前大学過去問
/ X
引用
求める定積分の値を順にI,Jとすると
I+J=∫[0→π/2]dx=π/2 (A)
一方、Iにおいて
x=π/2-t
と置くと
I=-∫[π/2→0]{(cost)/(cost+sint)}dt
∴I=J (B)
(A)(B)より
I=J=π/4
ということで二つの定積分の値は
いずれもπ/4になります。
No.89649 - 2024/12/22(Sun) 20:49:24
★
確率
/ アヤ
引用
問題
・52枚の1組のトランプから同時に5枚を抜き出すとき、次の確率を求めよ。
クラブ3枚と、他の絵札が2枚である確率
解答は「0.00366」となっていて、解説がありませんでした。自分なりで解きましたが「0.00366」になりませんでした。どこに問題があるのか教えていただけると助かります。
52枚の1組のトランプから同時に5枚を抜き出す事象
52C5=2598950
クラブ3枚の事象 13C3=286
他の絵札2枚の事象 9C2=36
よって、クラブ3枚と、他の絵札が2枚の事象
286×36=10296
10296/2598950=0.00396
No.89632 - 2024/12/21(Sat) 13:59:11
☆
Re: 確率
/ らすかる
引用
0.00396で正しいと思います。
0.00366は書き写しミスか何かでしょう。
No.89633 - 2024/12/21(Sat) 14:41:40
☆
Re: 確率
/ アヤ
引用
らすかる様
ご返信ありがとうございます。
解き方が間違いないことで安心できました。
No.89634 - 2024/12/21(Sat) 14:54:27
★
極
/ あおい
引用
(1)点Pのx座標が5/2のとき、四角形PQORの面積
答え:3√14/2
(2)点Pがのx座標が4のとき、直線QRの方程式
答え:4x+y=9
答えは分かっているのですが、解き方が分からないです。
No.89631 - 2024/12/21(Sat) 13:37:42
☆
Re: 極
NEW
/ ヨッシー
引用
点Pがどこにあっても
∠PQO=∠PRO=90°
△PQO≡△PRO
OQ=OR=3
であることは変わりません。
(1)
Pの座標は (5/2, 5/2) であるので、
PO=5√2/2
PQ=√(PO^2−OQ^2)=√(25/2−9)=√14/2
△PQO=PQ×QO÷2=3√14/4
よって、四角形PQORの面積はその2倍で、
3√14/2 ・・・答え
(2)
Pの座標は(4, 1) より、この点から円
x^2+y^2=9に引いた2接線の接点を結ぶ直線の式は
4x+y=9
説明は
こちら
など。
No.89659 - 2024/12/23(Mon) 10:19:37
★
電通大過去問
/ Higashino
引用
電通大過去問
積分
何卒よろしくお願いします
以下問題
No.89629 - 2024/12/21(Sat) 10:46:34
☆
Re: 電通大過去問
/ X
引用
∫[1→√c]{f(x)/x}dx=3 (A)
f(x)=f(c/x) (B)
とします。
(A)に(B)を代入して
∫[1→√c]{f(c/x)/x}dx=3 (A)'
ここでc/x=tと置くと
x=c/t
∴dx=-(c/t^2)dt
でx:1→√cにc:c→√cが対応し
(A)'は
-∫[c→√c]{tf(t)/c}(c/t^2)dt=3
これより
∫[√c→c]{f(t)/t}dt=3
∫[√c→c]{f(x)/x}dx=3 (A)"
(A)+(A)"から
∫[1→c]{f(x)/x}dx=6
No.89638 - 2024/12/21(Sat) 20:53:25
☆
Re: 電通大過去問
/ Higashino
引用
x 先生、おはようございます
ご回答ありがとうございます
以下、私の当番です
ご指摘アドバイス等ありましたらよろしくお願いいたします
No.89639 - 2024/12/22(Sun) 03:27:54
☆
Re: 電通大過去問
/ X
引用
方針に問題はありません。
但し、添付写真の解答2行目の真ん中辺りで
dxが抜けています。
No.89648 - 2024/12/22(Sun) 20:46:15
★
積分
/ Higashino
引用
積分
何卒よろしくお願いします
関東学院大学過去問
以下問題
No.89626 - 2024/12/21(Sat) 07:55:53
☆
Re: 積分
/ X
引用
(1)
与式の第二項において
x=f(t)
と置くと
f'(x)>0
よりf(x)は単調増加なので
x:5→8
に
t:2→4
が対応し
(与式)=∫[2→4]f(x)dx+∫[2→4]tf'(t)dt
=∫[2→4]f(x)dx+[tf(t)][2→4]-∫[2→4]f(t)dt
=4f(4)-2f(2)
=32-10
=22
(2)
部分積分により
∫[2→4]xf'(x)dx=[xf(x)][2→4]-∫[2→4]f(x)dt
=4f(4)-2f(2)-14
=8 (∵)(1)の過程より
(3)
x=f(t)と置くと、(1)の過程と同様にして
(与式)=∫[2→4]{f'(t)/f(t)}dt=logf(4)-logf(2)
=log(8/5)
No.89627 - 2024/12/21(Sat) 08:50:19
☆
Re: 積分
/ Higashino
引用
x 先生、こんにちは
ご回答ありがとうございます
今は積分を始めて、右も左もわからない状態です
基礎に戻り、公式が正しく使えるような草案を作ってみました
ご指摘アドバイスのでいただけると幸いです
以下答案
No.89628 - 2024/12/21(Sat) 09:16:02
☆
Re: 積分
/ X
引用
問題ないと思います。
No.89637 - 2024/12/21(Sat) 20:40:22
★
中学受験算数
/ 独ソ不可侵条約
引用
以下の図形の赤線の長さを求められないので教えてください。分数になるらしいです。
No.89622 - 2024/12/20(Fri) 21:28:53
☆
Re: 中学受験算数
/ 独ソ不可侵条約
引用
図が正確じゃなくてすみません。しかも手書きで。
No.89623 - 2024/12/20(Fri) 21:31:13
☆
Re: 中学受験算数
/ IT
引用
中学受験算数はピタゴラスの定理(三平方の定理)を使えますか?
(小学校では習わないようですが、正しく使っていればOKという説もありますが、使わなくても解ける問題が出題されるはず?)
ピタゴラスの定理(三平方の定理)を使う解法は、思いつきましたが、使わないのは思いつけません。
どこかの中学受験の過去問ですか?
No.89635 - 2024/12/21(Sat) 15:13:48
☆
Re: 中学受験算数
/ IT
引用
Cから直線ABへ下した垂線の交点をHとし
三平方の定理をでAHを求める。
DからABへ下した垂線の交点をEとする。
後は容易です。
(参考図 反転してます)
No.89636 - 2024/12/21(Sat) 18:00:09
☆
Re: 中学受験算数
/ らすかる
引用
これでどうでしょう
(1) 斜辺が4、底辺が2の3つの二等辺三角形EAB、AFE、BECを図の青線のように組み合わせる。
(2) Cを通りABと平行な直線(緑点線)とBEの交点をPとすると△CPEはCP=CE=2の
二等辺三角形となり、△CPE∽△BECだからPE=1。
四角形ABPCは平行四辺形なのでAC=BP=BE-PE=3、同様にBF=3。
(ここまでで△ABCと点Dは問題の図の通りになっています。)
(3) △GBF∽△GEAによりBG:EG=BF:EA=3:4なので、BG=(3/7)BE=12/7。
(4) △DBG∽△DCAによりBD:CD=BG:CA=12/7:3なので、
CD={3/(3+12/7)}BC=28/11。
よってx=28/11。
No.89643 - 2024/12/22(Sun) 15:02:36
☆
Re: 中学受験算数
/ IT
引用
らすかるさん
小学算数の範囲で出来るんですね!!
2つの図形を組み合わせるのは、いろいろ考えましたが、3つを組み合わせるのは、全く考えませんでした。
初見で時間内に解けるのは、図形の天才かも知れません。
いちおう三平方の定理を使った解答を載せておきます
y=AH,h=CHとおくと
三平方の定理から
△CAH:y^2+h^2=3^2
△CBH:(2+y)^2+h^2=4^2
2式の差からy=3/4
x:4=EH:BH=(1+y):(2+y)=7:11
∴x=28/11
No.89644 - 2024/12/22(Sun) 15:39:15
☆
Re: 中学受験算数
/ IT
引用
らすかるさんの図の一部(下記)でCQ=2-1/4=7/4 を求めてからでも出来ますね。
けっこういろいろな解法があるかも
No.89645 - 2024/12/22(Sun) 16:46:00
☆
Re: 中学受験算数
/ らすかる
引用
なるほど、その方が簡単ですね。
CA,AE,EBが向きを変えながら同じ傾きであることに注目して
BEを7延長してEA'=4、A'C'=3とするとCC'//AA'//HEであることから
BD:DC=BE:EC'=4:7のようにしても出せますね。
No.89654 - 2024/12/23(Mon) 00:33:24
☆
Re: 中学受験算数
NEW
/ 独ソ不可侵条約
引用
みなさんありがとうございます。
数学の先生が趣味で見たどっかの中学入試だそうで。
三平方は小学生は使えないです。相似とか同位角とか錯角は使うらしいです。
No.89662 - 2024/12/23(Mon) 21:13:34
☆
Re: 中学受験算数
NEW
/ 独ソ不可侵条約
引用
先生の想定してた解き方としては、
角Bを◯、角Cを△とおく→∠CAEが◯になるようにEをとって補助線AEをひく→それに平行でDを通る直線を引いて錯角とか同位角とか外角とかでゴタゴタやる→◯、△、◯◯△の三角形が大量生産されて相似を利用
みたいな感じらしいです。
No.89663 - 2024/12/23(Mon) 21:30:32
★
設問ミス??定期テストの変な問題です。
/ 定期テスト
引用
Xを求めてください。
与えられた情報は、図にあるものだけです。
並行などの情報も一切ありません。
手書きですみませんがよろしくお願いします。
以下問題
No.89618 - 2024/12/20(Fri) 14:18:43
☆
Re: 設問ミス??定期テストの変な問題です。
/ IT
引用
左の三角形から 70+2a=2b∴70=2b-2a
右の三角形から x+a=b ∴x=b-a
ここまでわかればできますよね?
No.89619 - 2024/12/20(Fri) 18:44:26
★
積分 006
/ Higashino
引用
積分
なにとぞよろしくお願いします
以下問題
No.89617 - 2024/12/20(Fri) 06:38:47
☆
Re: 積分 006
/ ポテトフライ
引用
返信がつかないようなので
(4)
x=tanyとおけばdx=dy/cos^2y
x:0→aのときy:0→b(ただしtanb=aをみたすb)
よって
与式=∫[0,b]dy=b=π/3
これよりa=tanb=tanπ/3=√3
(5)
x=atanyとおけばdx=(a/cos^2t)*dt
与式=∫cosy/a^2 dy=siny/a^2+C(Cは積分定数)
ここで
(x/a)^2+1=tan^2y+1=cos^2y
1-sin^2y=a^2/(x^2+a^2)
sin^2y=1-a^2/(x^2+a^2)
siny=x/√(x^2+a^2)
よって
与式=x/(a^2√(x^2+a^2))+C
No.89652 - 2024/12/22(Sun) 21:17:44
★
積分 005
/ Higashino
引用
積分
何卒よろしくお願いします
以下問題
No.89616 - 2024/12/20(Fri) 06:19:01
☆
Re: 積分 005
/ X
引用
(1)
√x=t
と置いて置換した後、部分積分をします。
(2)
x=2sinθ
と置きましょう。
(3)
2ax-x^2=a^2-(x-a)^2
と変形して
x-a=asinθ
と置きましょう。
No.89621 - 2024/12/20(Fri) 19:32:13
☆
Re: 積分 005
/ Higashino
引用
x 先生、おはようございます
アドバイスありがとうございます
アドバイス通りに答案を作成しました
ご指摘アドバイスなどいただけると幸いです
何卒よろしくお願いいたします
No.89625 - 2024/12/21(Sat) 05:51:27
☆
Re: 積分 005
/ X
引用
(1)
2行目の一番右の補1と書かれている式、つまり
>>=2(∫[0→2](te^t)dt-…
の
∫[0→2](te^t)dt
が誤りです。ここは
[te^t][0→2]
となります。(部分積分は理解できていますか?)
(2)(3)
問題ありません。
No.89650 - 2024/12/22(Sun) 21:05:42
★
積分 003
/ Higashino
引用
複素数平面も終え 積分の勉強を始めました
何卒よろしくお願いします
以下問題
問題数が多いですが、途中過程を書いていただけると幸いです。1行でもいいので
No.89615 - 2024/12/20(Fri) 06:02:55
☆
Re: 積分 003
/ X
引用
いずれも置換積分で解く問題ですね。
(1)
1-x^2=t
と置きます。
(2)
sinx=t
と置きます。
(3)
logx=t
と置きます。
(4)
x^3+1=t
と置きます。
(5)
tanx=(sinx)/cosx
と変形して
cosx=t
と置きます。
(6)
logx=t
と置きます。
No.89620 - 2024/12/20(Fri) 19:29:34
☆
Re: 積分 003
/ Higashino
引用
x先生今日は
わたくしは
複素数平面を卒業し
積分に勉強を開始いたしました
今後とも何卒よろしくお願いします
No.89624 - 2024/12/20(Fri) 22:10:57
☆
Re: 積分 003
/ X
引用
(5)が間違っていますね。(誤植ですか?)
答えは
-log|cosx|+C
(Cは積分定数)
です。
それと、そこら中で積分の末尾のdxが抜けています。
注意しましょう。(省略していいものではありません。)
No.89651 - 2024/12/22(Sun) 21:11:31
★
(No Subject)
/ やり直しメン
引用
算数です
トライしましたが難しかったです
解説も見ましたが難しかったです
解説では勉強を始めた1時○分のときの、長しんと短しんがつくる小さい方の角を□度とすると、短しんは□度まわっています。また、勉強をしていた時間は2時間から3時間の間と書いてありました。
No.89610 - 2024/12/19(Thu) 08:27:39
☆
Re:
/ ヨッシー
引用
これ、希学園のM先生が、H学園にいたときに、予想していた問題ですね。
その後、入試で本当に出たのか、あるいは、このテキストがM先生著のものなのか...
それはさておき、問題ですが、左の図の長針が指している位置をA分、
右の図の長針が指している位置をB分とします。
左の時刻から右の時刻までの間に、長針は
1時A分→2時A分→3時A分→4時B分
と、3周より少し足りない所まで回ります。一方、短針は
B分→A分
までの角度を進みます。ここまでで[ウ]は求めることが出来て、
長針と短針、合わせて3周分、つまり 1080°です。
1分間に、長針と短針は合わせて 6.5°進むので、1080°動くのにかかる時間は
1080÷13/2=2160/13=166と2/13(分)
2時間46と2/13分
となります。
No.89611 - 2024/12/19(Thu) 09:08:49
☆
Re:
/ ヨッシー
引用
下の方の速さの問題、写真が貼れてないので、
未解決なら、また貼っておいてくださいね。
No.89612 - 2024/12/19(Thu) 09:12:58
☆
Re:
/ やり直しメン
引用
ヨッシーさんご回答ありがとうございます
一方、短針は
B分→A分
までの角度を進みます。
ここが分かりませんでした。
又、以前に質問した写真ですがどうやらIpadに投稿すると写真が掲載されない時があります。
No.89613 - 2024/12/19(Thu) 12:23:14
☆
Re:
/ やり直しメン
引用
早とちりしました。
条件に書いてあるところを見落としました。
申し訳ありません。
No.89614 - 2024/12/19(Thu) 12:34:37
★
(No Subject)
/ 高知
引用
10桁の整数で5を6つ含むものの個数は幾つありますか。この問題の解き方を教えてください。
No.89604 - 2024/12/18(Wed) 08:29:54
☆
Re:
/ ヨッシー
引用
10個の数字を置く位置のうち、6個を選んで5を置く方法は
10C6=210(通り)
残った4個の位置に、5以外の9個の数字を置く方法は
9^4=6561(通り)
よって、5を6個含む数字の置き方は
210×6561=1377810
このうち、一番左が0になると9桁以下になるので除きます。その数は
9C6×9^3=61236(個)
よって、求める個数は
1377810−61236=1316574(個)
No.89605 - 2024/12/18(Wed) 09:13:10
☆
Re:
/ 高知
引用
ありがとうございます。感謝です。
No.89606 - 2024/12/18(Wed) 10:06:34
★
(No Subject)
/ やり直しメン
引用
算数です
(5)です
時計算です
分かりませんでした。解説お願いします
No.89599 - 2024/12/17(Tue) 22:28:50
☆
Re:
/ X
引用
隣り合う5分刻みの目盛りの1目盛り分の角度は
360°÷12=30°
従って
(50°-30°)÷30°×60[分]=40[分]
により、長針が指しているのは40[分]
このことから、40分の目盛りから1目盛り上
と2目盛り上の間、つまり9と10の目盛りの間
に短針があることがわかりますので
求める時刻は9時40分となります。
No.89601 - 2024/12/17(Tue) 23:32:56
★
漸化式
/ 雪だるま
引用
解き方と答えを教えて欲しいです。
No.89598 - 2024/12/17(Tue) 22:14:43
☆
Re: 漸化式
/ らすかる
引用
a[n+1]+p(n+1)^2+q(n+1)+r=2(a[n]+pn^2+qn+r)とおいて整理すると
a[n+1]=2a[n]+pn^2+(q-2p)n-p-q+r
問題の式と係数を比較してp=3,q-2p=0,-p-q+r=0
これを解いてp=3,q=6,r=9なので、問題の式は
a[n+1]+3(n+1)^2+6(n+1)+9=2(a[n]+3n^2+6n+9)
と変形できる。
b[n]=a[n]+3n^2+6n+9とおくと
b[n+1]=2b[n],b[1]=a[1]+3+6+9=19なので
b[n]=19・2^(n-1)
よってa[n]=b[n]-3n^2-6n-9=19・2^(n-1)-3n^2-6n-9
No.89603 - 2024/12/18(Wed) 04:08:43
☆
Re: 漸化式
/ 雪だるま
引用
らすかる 様
ありがとうございます!
No.89607 - 2024/12/18(Wed) 11:02:22
以下のフォームに記事No.と投稿時のパスワードを入力すれば
投稿後に記事の編集や削除が行えます。
記事No.
パスワード
記事編集
記事削除
画像削除
300/300件 [ ページ :
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>
|
過去ログ
|
画像リスト
]