[ 掲示板に戻る ]

記事No.11031に関するスレッドです

高2 青チャート数?T147 / 秋山ZERO
右の図の折れ線で表される関数をf(x)とする。
このとき、y=f{f(x)}のグラフをかけ。また、0≦x≦1でf{f(x)}=xとなるxの値を求めよ。

グラフはxが0でyが2、1で4、2で3、3で1、4で0です。


答えはx=2/3です。
まず

解説
【与えられたf(x)の式は,
0≦x≦1のとき,y=2x+2で,値域は2〜4…?@
1≦x≦2のとき,y=−x+5で,値域は3〜4…?A
2≦x≦3のとき,y=−2x+7で,値域は1〜3…?B
3≦x≦4のとき,y=−x+4で,値域は0〜1…?C

さらに?@の式は
0≦x≦1/2のとき,値域は2〜3…?D

1/2≦x≦1のとき,地域は3〜4…?E

とわけておく

f(f(x))は,0≦x≦1のとき,内側の値は?@によるので,
?Dのとき外側のf(x)は?Bの式になり,

y=−2(2x+2)+7となるから
f(f(x))=xは,
−2(2x+2)+7=xを解いて,x=3/5。ところが,?Dのときのxの範囲に入っていないので解ではない。
?Eのとき外側のf(x)は?Cの式になり,

y=−(2x+2)+4となるから
f(f(x))=xは,
−(2x+2)+4=xを解いて,x=2/3。これは,?Eのときのxの範囲に入っているので解である。

グラフに関しては,

0≦x≦1/2のときは前出。
1/2≦x≦1のときは前出。
1≦x≦2のとき,外側のf(x)は?Cだから,y=−(−x+5)+4
2≦x≦5/2のときは,内側のf(x)外側のf(x)とも?Bだから,y=−2(−2x+7)+7
5/2≦x≦3のときは,外側のf(x)は?Aだから,y=−(−2x+7)+5
3≦x≦4のとき,外側のf(x)は?@だから,y=2(−x+4)+2】

グラフで
【さらに?@の式は
0≦x≦1/2のとき,値域は2〜3…?D

1/2≦x≦1のとき,地域は3〜4…?E

とわけておく】とするのはどうしてなんでしょうか?
それ以降も全くわかりません。
誰か分かる方教えてください。
お願いします

No.11027 - 2010/07/29(Thu) 23:32:18

Re: 高2 青チャート数?T147 / ヨッシー
>グラフで
>【さらに?@の式は
>0≦x≦1/2のとき,値域は2〜3…?D
>
>1/2≦x≦1のとき,地域は3〜4…?E
>
>とわけておく】とするのはどうしてなんでしょうか?


f(x) の値域が、f(f(x)) では、定義域になるので、
折れ線の折れ目の3のところで、分けるのです。

図のようにy=f(x) のグラフと、x=f(y) のグラフを描いて、
両者が交わる●の点が f(f(x))=x となる点で、0≦x≦1 では
x=2/3 です。

No.11031 - 2010/07/30(Fri) 06:57:51