[ 掲示板に戻る ]

記事No.11635に関するスレッドです

たすけてください(;一_一) / わかんない
はじめまして。
方べきの定理についての質問です。
さっそく画像にてお願いいたします。
PA:PB=PC:PDの公式はわかるんですが、これでいくとどの角がA,B,C,Dだかわかりません。
こういう問題はどうすればいいのですか?

No.11635 - 2010/09/20(Mon) 14:06:36

Re: たすけてください(;一_一) / X
方べきの定理の証明過程を見ると、円周角を使って
2つの相似な三角形を見つけ出してその相似比について
式を立てているのが分かります。

ということで問題の図に適当な補助線をつけて相似な
2つの三角形を作ってみましょう。

No.11636 - 2010/09/20(Mon) 15:01:17

Re: たすけてください(;一_一) / わかんない
ありがとうございます。
ですがあまり理解できません(+_+)
結果的にどこがどの点になるのでしょうか?

No.11637 - 2010/09/20(Mon) 15:07:32

Re: たすけてください(;一_一) / X
例1)
長さ2,3の線分のPと反対側の端点をA,C (A)
長さ4,xの線分のPと反対側の端点をB,D (B)
として△PAC,△PBDを作ってみます。
(図を描いてみましょう)
すると円周角により
△PAC∽△PBD
であり、対応する辺の比により
>>PA:PB=PC:PD (C)
が成立しています。

上の場合はあくまで例の一つであり
長さ2,3の線分のPと反対側の端点をB,D
長さ4,xの線分のPと反対側の端点をA,C
として△PAC,△PBDを作ってもよい(図を描いてみましょう)
ですし、或いは
長さ2,xの線分のPと反対側の端点をB,D
長さ3,4の線分のPと反対側の端点をA,C
と取って△PAC,△PBDを作っても(図を描いてみましょう)
やはり成立します。

更に(A)(B)のように点A,B,C,Dを取って
今度は例1とは異なり、△PAB,△PCDを作ってみます。
(図を描いてみましょう)
するとやはり円周角により
△PAB∽△PCD
であり、対応する辺の比の関係により
PA:PC=PB:PD
これは(C)とは異なりますが方べきの定理です。



以上長々と書きましたが、この定理は補助線を加えて
相似な三角形を作り出すことで導き出されます。
ですので定理の等式を丸呑みにして
>>どこがどの点になる
という視点ではなくて、
1)相似な三角形がどこにでき、
2)2つの三角形を比較したときに対応する辺はどことどこか
という視点で考えてみましょう。

No.11638 - 2010/09/20(Mon) 16:03:14

Re: たすけてください(;一_一) / わかんない
なるほど!!
わかりました。
まずは図を書いてみますね。
ありがとうございました(^u^)

No.11639 - 2010/09/20(Mon) 16:34:23