[ 掲示板に戻る ]

記事No.18987に関するスレッドです

高3 / ktdg
自然数kに対して、3辺の長さがkx,ky,x^2+y^2の三角形を考えるとき、次の各問に答えよ。
(1)三角形の周の長さLのとりうる値の範囲をkで表せ。
(2)x,yを自然数とし、x,yの値の組の数をNとするとき、N≦k^2-1が成り立つことを示せ。また、k=10のとき、Nの値を求めよ。

(1)
L=kx+ky+x^2+y^2=(x+k/2)^2+(y+k/2)^2-k^2/2
(x+k/2)^2+(y+k/2)^2=L+k^2/2ー?@より、√(L+k^2/2)はxy平面において中心(-k/2,-k/2)の円の半径である。
三角形の成立条件より、
kx+ky>x^2+y^2かつkx+x^2+y^2>kyかつky+x^2+y^2>kx
⇔(x-k/2)^2+(y-k/2)^2>k^2/2ー?Aかつ(x+k/2)^2+(y-k/2)^2>k^2/2ー?Bかつ(x-k/2)^2+(y+k/2)^2>k^2/2ー?C
xy平面において、?@が?A,?B,?Cをみたすような?@の半径の範囲は、k/√2<√(L+k^2/2)<3k/√2
∴ 0<L<4k^2

(2)についてですが、Nは(1)の?A,?B,?Cを満たす領域における格子点の数のことですか?
間違っているなら方針だけ教えて欲しいです。

No.18975 - 2012/10/19(Fri) 05:35:50

Re: 高3 / X
>>Nは(1)の?A,?B,?Cを満たす領域における格子点の数のことですか?
それで問題ないと思います。

No.18977 - 2012/10/19(Fri) 07:26:41

Re: 高3 / ktdg
回答ありがとうございます。
?A,?B,?Cを満たす領域は以下の画像の斜線部のようになり、D1に含まれる格子点の数はD2のそれと等しく、またD3に含まれる格子点の数は、y=k,x=k,y=xの3つの直線で囲まれる三角形に含まれる格子点からD1に含まれる格子点を引いたものに等しいので、D1に含まれる格子点の数が分かればNが分かると思います。
x=m(m=1,2,3,,,k)と(x-k/2)^2+(y-k/2)^2=k^2/2の交点のy座標のうち正のものは、y=√{k^2/2-(m-k/2)^2}+k/2となりますが、ここからどうやって格子点を求めればよいのか分かりません。教えて下さい。

No.18986 - 2012/10/19(Fri) 17:54:54

Re: 高3 / ktdg
すいません画像が貼れてませんでした。
No.18987 - 2012/10/19(Fri) 17:56:18