a,bを実数とし、曲線C:y=x^2+2ax+bと平面上の4点O(0,0),P(2,4),Q(2,5),R(0,1)を頂点とする平行四辺形を考える。直線OPは曲線Cの接線であり、その接点は線分OP上にあるとする。曲線Cの上側と平行四辺形OPQRの内部の共通部分の面積をS(a)としたとき、その最大値を求めよ。
(自分) bをaで表して、題意からaの値の取り得る値の範囲 を求めるだけで行き詰ってしまいました。S(a)をaで表せえすればすべて解決すると思うのですが・・・何か解決の糸口をご教授ください。
|
No.1930 - 2008/08/04(Mon) 21:39:05
|