[ 掲示板に戻る ]

記事No.26914に関するスレッドです

(No Subject) / tt
この問題で、6回目をn回目に一般化したときってできますか?
No.26914 - 2014/06/15(Sun) 15:02:51

Re: / ヨッシー
3円になるのは偶数回のときなので、2n 回として考えます。
2n回目に太郎君が
 1円の確率をAn、3円の確率をBn
とします。ただし、A0=0,B0=1。
1円の状態から、太郎君が
 負け→勝ち 確率1/4 終了
 負け→負け 確率1/4 終了
 勝ち→負け 確率1/4 1点
 勝ち→勝ち 確率1/4 3点
3円の状態から、太郎君が
 負け→勝ち 確率1/4 3点
 負け→負け 確率1/4 1点
 勝ち→負け 確率1/4 3点
 勝ち→勝ち 確率1/4 終了
以上より、
 A(n+1)=(1/4)An+(1/4)Bn
 B(n+1)=(1/4)An+(1/2)Bn
この先はこちらを見ていただくとして
結果は以下の通りです。

No.26920 - 2014/06/15(Sun) 15:57:05

余談 / angel
細かい所ですが、ちょっと曖昧でよろしくない問題文のように見えます。
「6回目のじゃんけんで太郎君の所持金が3円になる確率」の所ですが。
「で」を前提の意味で捉えるか ( つまり「じゃんけんが6回目まで続いた」という前提での「条件付き確率」として考えるか ) どうかで答えが変わってしまいますから。

…おそらく、問題の意図としては条件付き確率ではないのでしょうが。( ヨッシーさんの解説もそうですね )

No.26922 - 2014/06/15(Sun) 16:52:13