f(x)=log(x+√(1+x^2))とするとき、x=0におけるテイラー展開をしました。f(x)を微分していくと f'(x)=1/(x^2+1)^(1/2) f''(x)=-x/(x^2+1)^(3/2) f'''(x)=(2x^2-1)/(x^2+1)^(5/2) f''''(x)=-3(2x^3+3x)/(x^2+1)^(7/2) f'''''(x)=3(8x^4-24x^2+3)/(x^2+1)^(9/2) f''''''(x)=-15x(8x^4-40^2+15)/(x^2+1)^(11/2) f'''''''(x)=45(16x^6-120x^4+90x^2-5)/(x^2+1)^(13/2)
となりました。これをマクローリン展開の公式に代入すると f(x)=x-(x^3)/6+(3x^5)/40-(5x^7)/112…剰余項 となりました。
一般項を求めたいのですが、 f'(x)=1/(x^2+1)^(1/2)のときx^2=tと置き、 g(t)=(t+1)^(-1/2)としました。 g(t)についてn回微分し g(n回微分)(t)=(‐1)^n*(((2n-1)!!)/2^n)*(1+t)^-((2n-1)/2) となりました。
g(t)についてt=0の時テイラー展開したところ g(t)=1-t/2+3t^2/8-5t^3/16+…+((‐1)^n*(((2n-1)!!)/2^n))/n!+Rt となりました。
ここで先生からこのようなコメントを頂きました。 「gとfの関係をはっきりさせ、g(t)のテイラー展開からf'(x)のテイラー展開を求め、それがf'(x)のテイラー展開と一致することからf'(0)、f''(0)…をもとめ、それを用いてf(x)のテイラー展開を書けばよい」 ここで思考がストップしてしまいました。 今後どのように組み立てればよいか教えていただけると嬉しいです。
|
No.36009 - 2016/02/24(Wed) 23:02:17
|