(2)(3)?@6分後 ?A2分後、10分後、13分後 難しくてどうやって解いたらよいかわかりません。解説よろしくお願いします。
|
No.39078 - 2016/09/24(Sat) 13:23:30
| ☆ Re: 1次関数 / noname | | | どの箇所に対する質問なのかがよく分かりませんので,一応各々の設問に対して考え方を与えておきます.
[考え方] (1)図2の0分から12分までのグラフを見ると,水槽の左側の部分では水面が1分間に1cmだけ上昇することが分かる.このことから,水槽の左側の部分では1分間に給水される水量が分かる. (2)図2のグラフを見ると,18分以降については給水管A,Bの両方から放出される水により水面が上昇することが分かる.また,仕切りがない場合では,水槽に給水管Aから放出される水のみを入れる時,
(1×4×6)÷(12・6)=1/3
により水面は分速1/3cmの速さで上昇することが分かる.さらに,図2の18分以降のグラフの傾きは2/3であるから,18分以降での水槽内での水面の上昇の速さは分速2/3cmである.ゆえに,18分以降では,給水管Bは1分間に1/3cmの分だけ水面を上昇させることが分かる.ゆえに,水槽の右側の部分に給水し始めてから18分までの間では,
(1/3×12×6)÷(8×6)=1/2
により水面は1分間に1/2cmだけ上昇することが分かる.よって,水槽の右側の部分では12分後で水面は12×1/2=6(cm)だけ上昇することになる.したがって,水槽の右側の部分の水面の高さと時間の関係を表すグラフを図2に描くには,図2において2点(0,0),(12,6),2点(12,6),(18,12),2点(18,12),(27,18)をそれぞれ真っ直ぐな線で結べばよい. (3)?@水槽の左側の部分の水面の高さから右側の部分の水面の高さを引いたものが3cmであればよい.右側の部分の水面に対する左側の部分の水面の上昇の速さは1-1/2=1/2(cm/分)である.よって,3÷1/2=6より答えは6分後である. ?A(a)まずは0分から6分の間で条件が成り立つ場合があるかどうかを調べる.この時,左側の部分の水面は右側の部分の水面よりも低いため,後者から前者を引いたものが2cmであればよいが,これは
(左側に初めに入っている分の水の水面の高さ)+(右側の部分の水面の上昇した分から左側の部分の水面の上昇した分を引いたもの)…?@
に等しく,?@の2つ目の項は1分間においては1/2-1=-1/2であるから,?@の値は時間が経過するとともに減っていくことが分かる.よって,何分後に?@の2つ目の部分が-1になるかを考えればよい. (b)次に,6分から12分の間で条件が成り立つ場合があるかどうかを調べる.この場合では,水槽の左側の部分の水面の上昇は右側の部分の水面のそれよりも速いため,左側の部分の水面の高さから右側の部分の水面の高さを引いたものが2cmであればよいが,これは
(左側の部分の水面が6分後以降で上昇した分)-(右側の部分の水面が6分後以降に上昇した分上昇した分)
に等しい.この式は1分間で1-1/2=1/2なので,何分後にこの1/2が2になるかを考えるとよい. (c)最後に,12分後以降で条件が成り立つ場合があるかどうかを調べる.この時,左側の部分は満水であるため,右側の部分に関しては給水管A,Bから放出される水により水面が上昇する.ところで,左側の部分の底面積の2倍が右側の部分の底面積であり,左側の部分では水面の上昇の速さは分速1cmであったから,この場合での右側の部分の水面の上昇の速さは1/2+1/2=1(cm/分)である.よって,この速さで右側の水面の高さが10cmとなるには12分から何分後であればよいかを考えればよい.
|
No.39082 - 2016/09/24(Sat) 16:26:23 |
|