[ 掲示板に戻る ]

記事No.49682に関するスレッドです

図形と方程式 / 東大夢見る浪人生
(2)の後半からお願いします。
No.49682 - 2018/04/13(Fri) 20:50:11

Re: 図形と方程式 / らすかる
△ABCは
4頂点が(0,0),(5,0),(5,6),(0,6)である長方形から
3頂点が(0,0),(3,0),(0,1)である直角三角形と
3頂点が(3,0),(5,0),(5,6)である直角三角形と
3頂点が(5,6),(0,6),(0,1)である直角三角形を除いたものなので
△ABC=5×6-3×1÷2-6×2÷2-5×5÷2=10

AB:BE=2:1となるように直線AB上に点EをとるとE(9/2,-1/2)
この点を通り直線BCに平行な直線はy=3x-14
点Dの座標はこの直線と円Kとの交点なので(5,1)と(6,4)

No.49683 - 2018/04/13(Fri) 21:35:07

Re: 図形と方程式 / 東大夢見る浪人生
なぜ、AB:BE=2:1に点を取るんですか?
No.49686 - 2018/04/13(Fri) 21:55:48

Re: 図形と方程式 / らすかる
AB:BE=2:1ならば
(Aから直線BCまでの距離):(Eから直線BCまでの距離)=2:1ですね。
Eを通り直線BCに平行な直線の上にDがあれば
(Dから直線BCまでの距離)=(Eから直線BCまでの距離)
つまり
(Aから直線BCまでの距離):(Dから直線BCまでの距離)=2:1となり、
Dがどこにあっても必ず△ABC:△BCD=2:1となります。

No.49687 - 2018/04/13(Fri) 22:02:33