[
掲示板に戻る
]
記事No.49804に関するスレッドです
★
ベクトル
/ 化学の新研究
引用
(1)からお願いします!!!
No.49804 - 2018/04/20(Fri) 19:02:55
☆
Re: ベクトル
/ X
引用
3↑OP+2↑AP+3↑BP=↑O (A)
とします。
(1)
条件から
↑a・↑b=OA・OBcos∠AOB
=3・6・(-1/4)
=-9/2
(2)
前半)
(A)より
3↑OP+2(↑OP-↑a)+3(↑OP-↑b)=↑O
∴↑OP=(1/8)(↑a+↑b)
=(1/4){(↑a+↑b)/2} (A)'
これは点Pが、
点Oと辺ABの中点を結ぶ線分を1:3に内分する点
であることを示しています。
よって、条件から
↑OC=(↑a+↑b)/2
後半)
前半の結果から
OC^2=(1/4)|↑a+↑b|^2
=(1/4)(OA^2+2↑a・↑b+OB^2)
これに(1)の結果などを代入して
OC^2=9
∴OC=3
(3)
条件から
↑BQ//↑OC
∴↑BQ=k↑OC (kは実数)
と置くことができます。
(2)の過程を使うとこれより
↑OQ-↑b=k(↑a+↑b)/2
↑OQ=(k/2)↑a+(k/2+1)↑b (B)
∴(A)'により
↑PQ=↑OQ-↑OP=(k/2-1/8)↑a+(k/2+7/8)↑b (B)'
ここで条件から
↑PQ⊥↑OC
∴↑PQ・↑OC=0 (C)
(C)に(B)'と(2)前半の結果を代入すると
{(k/2-1/8)↑a+(k/2+7/8)↑b}・{(↑a+↑b)/2}=0
これより
{(4k-1)↑a+(4k+7)↑b}・(↑a+↑b)=0
(4k-1)OA^2+(8k+6)↑a・↑b+(4k+7)OB^2=0
これに更に(1)の結果などを代入すると
9(4k-1)-9(4k+3)+36(4k+7)=0
(4k-1)-(4k+3)+4(4k+7)=0
∴k=-3/2
これを(B)に代入して
↑OQ=-(3/4)↑a+(1/4)↑b
No.49809 - 2018/04/20(Fri) 21:17:26