[
掲示板に戻る
]
記事No.54435に関するスレッドです
★
(No Subject)
/ ももか
引用
an<10^10を満たす最大のnを求める問題で
黄色の部分がわかりません。その前後は分かります!
ちなみにan=2^n+3^n
No.54435 - 2018/10/14(Sun) 22:31:17
☆
Re:
/ らすかる
引用
3^n<2^n+3^n はわかりますよね?
また
2^(n+1)<3^(n+1)
なので
2^(n+1)+3^(n+1)<3^(n+1)+3^(n+1)=2・3^(n+1)
です。
よって
2^n+3^n<10^10≦2^(n+1)+3^(n+1)
から
3^n<2^n+3^n<10^10≦2^(n+1)+3^(n+1)<2・3^(n+1)
ですから、少なくとも
3^n<10^10<2・3^(n+1)
が成り立ちます。
No.54437 - 2018/10/14(Sun) 22:43:44
☆
Re:
/ ももか
引用
なるほど!これはよく使う手法でしょうか?
これ以外の解き方ってありますか? 受験生はみなこのように立式して解くのでしょうか??
No.54440 - 2018/10/14(Sun) 23:08:05
☆
Re:
/ らすかる
引用
そのままでは評価しにくい時に、一回り大きく評価するのは
よくあることだと思います。
> これ以外の解き方ってありますか?
問題文を見てみないと何とも言えません。
No.54442 - 2018/10/14(Sun) 23:24:36