[ Œfަ”Β‚Ι–ί‚ι ]

‹LŽ–No.56456‚ΙŠΦ‚·‚ιƒXƒŒƒbƒh‚Ε‚·

š (No Subject) / ‚½‚Ÿ
‚±‚Μ–β‘θ‚ΜŒvŽZ‰ί’φ‚ͺ•ͺ‚©‚θ‚ά‚Ή‚ρB
‰πΰ‚π‚¨Šθ‚’‚΅‚ά‚·B

No.56456 - 2019/02/03(Sun) 15:38:52

™ Re: / ‚η‚·‚©‚ι
—Ⴆ‚ΞƒΖ=ƒΞ‚Μ‚Ζ‚«
η[cosƒΖ`1]γ(1-x^2)dx=η[-1`1]γ(1-x^2)dx=ƒΞ/2‚Θ‚Μ‚Ε
S(ƒΞ)=(3γ3/2)sinƒΞcosƒΞ+(γ3)η[cosƒΞ`1]γ(1-x^2)dx
=(γ3)ƒΞ/2ΰ2.72‚Ζ‚Θ‚θA
3/4+(γ3/6)ƒΞΰ1.6569‚͍őε’l‚Ε‚Ν‚ ‚θ‚ά‚Ή‚ρB
‰½‚©‘Ό‚ΙπŒ‚ͺ‚ ‚ι‚̂ł́H

No.56457 - 2019/02/03(Sun) 16:02:19

™ Re: / ‚½‚Ÿ
0<ƒΖ<2/ƒΞ ‚Ε‚΅‚½B
No.56459 - 2019/02/03(Sun) 16:59:31

™ Re: / ‚½‚Ÿ
’ω³‚Ε‚·B
0<ƒΖ<ƒΞ/2

No.56460 - 2019/02/03(Sun) 17:00:25

™ Re: / ‚η‚·‚©‚ι
η[cosƒΖ`1]γ(1-x^2)dx‚Ν
x=cost‚Ζ‚¨‚―‚Ξdx=-sintdt, x=cosƒΖ‚Μ‚Ζ‚«t=ƒΖ, x=1‚Μ‚Ζ‚«t=0‚Θ‚Μ‚Ε
η[cosƒΖ`1]γ(1-x^2)dx
=η[ƒΖ`0]γ{1-(cost)^2}E-sintdt
=η[0`ƒΖ](sint)^2 dt
=(1/2)η[0`ƒΖ]1-cos2tdt
=(1/4)[2t-sin2t][0`ƒΖ]
=ƒΖ/2-sin2ƒΖ/4
S(ƒΖ)=(3γ3/2)sinƒΖcosƒΖ+(γ3){ƒΖ/2-sin2ƒΖ/4}
=(3γ3/4)sin2ƒΖ+(γ3){ƒΖ/2-sin2ƒΖ/4}
=(γ3/2)(sin2ƒΖ+ƒΖ)
S'(ƒΖ)=(γ3/2)(2cos2ƒΖ+1)
2cos2ƒΖ+1=0‚π‰π‚­‚ΖƒΖ=ƒΞ/3‚Θ‚Μ‚Ε
S'(ƒΖ)‚̓ƁƒƒΞ/3‚Ő³AƒΞ/3ƒƒΖ‚Ε•‰
]‚Α‚čőε’l‚ΝƒΖ=ƒΞ/3‚Μ‚Ζ‚«‚Ε
S(ƒΞ/3)=(γ3/2)(sin(2ƒΞ/3)+ƒΞ/3)
=3/4+(γ3/6)ƒΞ

No.56463 - 2019/02/03(Sun) 18:56:17

™ Re: / ‚½‚Ÿ
‚ ‚θ‚ͺ‚Ζ‚€‚²‚΄‚’‚ά‚·😊
No.56479 - 2019/02/04(Mon) 15:07:18