[ 掲示板に戻る ]

記事No.58571に関するスレッドです

(No Subject) / モンゴル
こういう問題で、例えば画像の丸のところのように

10^3≡...≡6≡-1(mod7)を
10^3≡...≡6(mod7)、つまり6に対して0を商にして余りを6とすると考えて計算しても解けるのですか?

6を7で割るとき、商を1にして、わざわざ余りが-1にするというのが不思議です。
なるべく数や絶対値が小さいようにする工夫ですか?

No.58571 - 2019/05/27(Mon) 15:54:54

Re: / ヨッシー
合同式は、法に対する余りとして理解されることが多いですが、
必ずしも0から(法−1)までで表す必要はありません。
 15≡1≡8≡−6 (mod 7)
です。

この問題ですが、
>なるべく数や絶対値が小さいようにする工夫
ですが、なぜ小さいと都合がいいのかを理解しておかないといけません。
例えば、mod 11 のときに、
-1, 1, -1, 1, -1, 1,・・・

10, 1, 10, 1, 10, 1,・・・
だったとして、解答にあるような結果が導けるか?
と考えるとわかるのではないでしょうか?

もちろん、
模範解答:各位の数を、各位1つおきに2つのグループに分けて、それぞれの和の差を取る
の代わりに
各位の数を、各位1つおきに2つのグループに分けて、それぞれの和を計算し、
どちらか一方を10倍して和を取る
でも判定できますが、計算結果がどうしても大きくなるため、再度判定しないといけないなど、短所が目立ちます。

No.58573 - 2019/05/27(Mon) 16:12:59

Re: / モンゴル
勉強になりました。ありがとうございます。
なるべく簡単な数になるように工夫しようと思います。

No.58575 - 2019/05/27(Mon) 16:27:41