[ 掲示板に戻る ]

記事No.77026に関するスレッドです

大学数学 フーリエ / チャン
(1) y(t)= δ(t + d) - δ(t)の概略図を描きなさい。
(2) y(t)のフーリエ変換Y1(ω)を求めなさい。
(3) x2(t)とy(t)のたたみ込みで与えられる信号z1(t)(=x2(t)*y(t))の概略図を描きなさい。x2(t)= { 1 , (0 < t < d) ,, 0 (t < 0, t > d)}です。
(4) z1(t)のフーリエ変換Z1(ω)を求めよ。
(5) z1(t)を積分して得られる信号z2(t)(積分範囲は-∞からt)の概略図を描きなさい。
(6) z2(t)のフーリエ変換Z2(ω)を求めなさい。

(1),(2),(3),(4)は解いたのですが正解なのかがわかりません。(5),(6)はわからないので教えていただきたいです。

No.77026 - 2021/07/28(Wed) 00:05:38

Re: 大学数学 フーリエ / X
(1)(2)(3)
問題ないと思います。
(4)
計算過程に問題はありませんが、もう少し簡単な式
にできます。
オイラーの公式を適用すると
Z[1](ω)=(2j/ω){1-cos(ωd)}

No.77031 - 2021/07/29(Thu) 05:58:39

Re: 大学数学 フーリエ / X
(5)
(3)の結果を積分して
z[2](t)=0(t<-d,d<t)
z[2](t)=t+d(-d≦t<0)
z[2](t)=-t+d(0<t≦d)

(6)
(4)の結果を使うと
Z[2](ω)={1/(jω)}Z[1](ω)=(2/ω^2){1-cos(ωd)}
注)
半角の公式を使えば、上記から更に
sinc関数
を使った形に変形してできますが
ここでは上記までの変形に
留めておきました。

No.77034 - 2021/07/29(Thu) 06:29:23

Re: 大学数学 フーリエ / チャン
ありがとうございます。
(4)についてオイラーの公式を適用した際に(2j/ω)になるのがわかりません。計算過程を教えて頂きたいです。
(5)に概略図については(3)の図と形は変わりませんが合っていますか?

No.77048 - 2021/07/29(Thu) 22:38:36

Re: 大学数学 フーリエ / X
>>(4)について〜
オイラーの公式により
cosωd={e^(jωd)+e^(-jωd)}/2
∴e^(jωd)+e^(-jωd)=2cosωd
これを問題の整理する前の式に代入して-2を括り出し
分母分子にjをかけます。

>>(5)に概略図について〜
間違っています。
座標平面上で
z[2](t)=t+dは傾き1、切片dの直線
z[2](t)=-t+dは傾き-1、切片dの直線
です。

No.77104 - 2021/07/31(Sat) 05:59:39