[ 掲示板に戻る ]

記事No.77040に関するスレッドです

(No Subject) / 源静
大学生です。
解答はのっているのですが解き方が思いつかなくて詰んでます。どう解いていったらよいか教えて下さい。

No.77040 - 2021/07/29(Thu) 20:24:35

Re: / X
次のキーワードでネット検索してみて下さい。
二項積分

No.77041 - 2021/07/29(Thu) 21:00:30

Re: / 関数電卓
飛び道具 を使うと,不定積分は
 ∫√(x^2+1)/x・dx=√(x^2+1)−tanh-1(√(x^2+1)+C
となるようです。
これを定積分にした場合,お書きの <解答> のような形にするには,与式において
 x=(e^u−e^(-u))/2
と置換すると,うまくいきます。

No.77043 - 2021/07/29(Thu) 21:10:04

Re: / 源静
お二人ありがとうございます。やってみます。
No.77046 - 2021/07/29(Thu) 21:58:29

Re: / IT
x=tanθとおくと

∫√((x^2+1)/x^2)dx
=∫1/((sinθ)(cosθ)^2)dθ

t=cosθとおくと
=-∫1/((1-t^2)t^2)dt
=-∫{1/(2(1-t))+1/(2(1+t))+1/t^2}dt
=(1/2)log|1-t|-(1/2)log|1+t|+1/t

ここで t=1/√(x^2+1) を代入する。 でできるのでは?

係数などは確認してください。 検算してないので間違っているかもしれません。

No.77047 - 2021/07/29(Thu) 22:26:48