[ 掲示板に戻る ]

記事No.88634に関するスレッドです

テストの問題 / m^2+n^2=2024
中3です。?@FCの長さ ?AFEの長さを求めてください。
自分は相似+三平方の定理でとこうとしましたが失敗しました…。てかまだ習ってないから使わなくても解けるはずですが。

No.88634 - 2024/08/20(Tue) 22:35:11

Re: テストの問題 / m^2+n^2=2024
写真あげ直します。影が入ってるほうあげちゃった…
No.88635 - 2024/08/20(Tue) 22:36:40

Re: テストの問題 / X
三平方の定理を使う方針を。

まず、△ABCの面積をAB,CAをそれぞれ底辺
と見る2通りであらわすことで、辺BEに
ついての方程式を立てて解き、BEの長さを
求めます。

次に条件から△BCDが直角二等辺三角形
となっていることから、三平方の定理
により辺BCの長さが求められますので、
△BCEに三平方の定理を使うことで
辺CEの長さが求められます。

後は、
△BDF∽△CEF
であることから、相似比を使って
辺CF,FEの長さについて方程式を立てます。

注)
添付写真の書き込みでも
△BDF∽△CEF
であることから相似比を使って計算しよう
としているように見えますが、対応させる辺
が間違っています。

No.88637 - 2024/08/20(Tue) 23:01:53

Re: テストの問題 / _
相似だけでいくなら。

DC=8だから、△ADCは6:8:10=3:4:5の三角形。
△ADCと△AEBと△FDBは相似。DB既知よりDF求まる。
また△FDBと△FECも相似。FC分かればFE求まる。

No.88641 - 2024/08/21(Wed) 14:07:38