| cos5θ,cos6θ,cos7θの導出例
cos2θ=2(cosθ)^2-1 cos4θ=2(cos2θ)^2-1=2{2(cosθ)^2-1}^2-1=8(cosθ)^4-8(cosθ)^2+1 sin2θ=2sinθcosθ sin4θ=2sin2θcos2θ=2(2sinθcosθ){2(cosθ)^2-1}={8(cosθ)^3-4cosθ}sinθ
cos5θ=cos4θcosθ-sin4θsinθ ={8(cosθ)^4-8(cosθ)^2+1}cosθ-{8(cosθ)^3-4cosθ}sinθ・sinθ ={8(cosθ)^4-8(cosθ)^2+1}cosθ-{8(cosθ)^3-4cosθ}{1-(cosθ)^2} =16(cosθ)^5-20(cosθ)^3+5cosθ
sin5θ=sin4θcosθ+cos4θsinθ ={8(cosθ)^3-4cosθ}sinθ・cosθ+{8(cosθ)^4-8(cosθ)^2+1}・sinθ ={16(cosθ)^4-12(cosθ)^2+1}sinθ
cos6θ=cos5θcosθ-sin5θsinθ ={16(cosθ)^5-20(cosθ)^3+5cosθ}cosθ-{16(cosθ)^4-12(cosθ)^2+1}sinθ・sinθ ={16(cosθ)^5-20(cosθ)^3+5cosθ}cosθ-{16(cosθ)^4-12(cosθ)^2+1}{1-(cosθ)^2} =32(cosθ)^6-48(cosθ)^4+18(cosθ)^2-1
sin6θ=sin5θcosθ+cos5θsinθ ={16(cosθ)^4-12(cosθ)^2+1}sinθ・cosθ+{16(cosθ)^5-20(cosθ)^3+5cosθ}sinθ ={32(cosθ)^5-32(cosθ)^3+6cosθ}sinθ
cos7θ=cos6θcosθ-sin6θsinθ ={32(cosθ)^6-48(cosθ)^4+18(cosθ)^2-1}cosθ -{32(cosθ)^5-32(cosθ)^3+6cosθ}sinθ・sinθ ={32(cosθ)^6-48(cosθ)^4+18(cosθ)^2-1}cosθ -{32(cosθ)^5-32(cosθ)^3+6cosθ}{1-(cosθ)^2} =64(cosθ)^7-112(cosθ)^5+56(cosθ)^3-7cosθ
|
No.89138 - 2024/10/16(Wed) 02:17:33 |