[ 掲示板に戻る ]

記事No.89200に関するスレッドです

近畿大過去問 / Higashino
こんにちは

なにとぞよろしくお願いします

複素数平面

以下問題

No.89198 - 2024/10/26(Sat) 02:42:07

Re: 近畿大過去問 / X
問題の方程式から
z^3=(2√2){cos(3π/4)+isin(3π/4)}
∴z=(√2){cos(π/4+2nπ/3)+isin(π/4+2nπ/3)}
(nは任意の整数)
となるので
z=(√2){cos(π/4)+isin(π/4)},(√2){cos(π/4+2π/3)+isin(π/4+2π/3)}
,(√2){cos(π/4+4π/3)+isin(π/4+4π/3)}
ここで
(√2){cos(π/4)+isin(π/4)}=1+i

(√2){cos(π/4+2π/3)+isin(π/4+2π/3)}=(1+i){cos(2π/3)+isin(2π/3)}
=(1/2)(1+i)(-1+i√3)
=(1/2){-(1+√3)+i(√3-1)}

(√2){cos(π/4+4π/3)+isin(π/4+4π/3)}=(1+i){cos(4π/3)+isin(4π/3)}
=-(1/2)(1+i)(1+i√3)
=-(1/2){(1-√3)+i(1+√3)}

以上から
z=1+i,(1/2){-(1+√3)+i(√3-1)},-(1/2){(1-√3)+i(1+√3)}

No.89199 - 2024/10/26(Sat) 16:56:48

Re: 近畿大過去問 / Higashino
X先生、おはようございます

お久しぶりです

ご回答ありがとうございました

私は図形的なアプローチを試みてみました

考え方が正しいのかご意見いただければ幸いです

以下答案

No.89200 - 2024/10/27(Sun) 08:05:57