[ 掲示板に戻る ]

記事No.89363に関するスレッドです

中3 相似 / un kn0wn
問題 平行四辺形ABCDがあり、ADの中点をE,CDを3等分する点のうちCに近い方をFとし、Af,ECの交点をGとする。三角形GFCの面積は平行四辺形の面積の何倍ですか?

この問題の解き方を教えてください。AFとBCを伸ばすと相似な三角形が2つできるのはわかります。

No.89363 - 2024/11/19(Tue) 15:17:39

Re: 中3 相似 / un kn0wn
平行四辺形の面積の何倍ですか?は平行四辺形ABCDの面積の何倍ですか?の間違いです。
No.89364 - 2024/11/19(Tue) 15:18:27

Re: 中3 相似 / ヨッシー
AFとBCの交点をHとすると、
 △ABH∽△FCH 
であり、相似比は AB:FC=3:1。
また、
 △AEG∽△HCG
であり、相似比は AE:CH=1:1
線分AH上において、
 AG=GH=1:1
 AF:FH=2:1
より、
 AG:GF:FH=3:1:2
△GFCと平行四辺形ABCDの面積を比較するのに、CD、CFを底辺とすると、
底辺比は 1:3 高さ比は FG:FA=1:4
一方が三角形、一方が平行四辺形であることを考慮すると、面積比は
 1:24
答え 1/24

No.89365 - 2024/11/19(Tue) 16:08:48

Re: 中3 相似 / un kn0wn
「△AEG∽△HCG
であり、相似比は AE:CH=1:1」
1:1はなぜいえるのか教えてください?

No.89366 - 2024/11/19(Tue) 17:09:35

Re: 中3 相似 / ヨッシー
△ABHと△FCHの相似比が3:1なので、
 BH:CH=3:1
から
 BC:CH=2:1
つまり、CHはBCの1/2倍 ということが言えて、
AEとCHは等しいことがわかります。

No.89367 - 2024/11/19(Tue) 17:18:14

Re: 中3 相似 / un kn0wn
わかりました!ありがとうございました!
学年の正答率6%…

No.89382 - 2024/11/21(Thu) 21:04:08