[ 掲示板に戻る ]

記事No.89371に関するスレッドです

慶応大学過去問 / Higashino
慶応大学過去問

複素数平面

なにとぞよろしくお願いします

以下問題

No.89346 - 2024/11/18(Mon) 06:43:51

Re: 慶応大学過去問 / ヨッシー
z=x+yi と置きます。
(1)
 0≦|z|≦1
より、
 |z|^2≦1
 |z|^2=x^2+y^2≦1 ・・・(i)
同様に
 |z−1|^2≦|z|^2
 (x−1)^2+y^2≦x^2+y^2
 1−2x≦0
 x≧1/2    ・・・(ii)
グラフは省略しますが、
円 x^2+y^2=1 の周囲を含む内部のうち、
直線x=1/2 より右側にある部分(x=1/2 上の点も含む)
となります。

(2)
半径1、中心角 120°の扇形から
底辺√3、高さ 1/2 の三角形を引いたものなので、
 π/3−√3/4

(3)
(i)(ii) ともに等号が成り立つときなので、
 z=1/2±(√3)i/2

No.89353 - 2024/11/18(Mon) 11:23:25

Re: 慶応大学過去問 / Higashino
ヨッシー先生、おはようございます

お久しぶりです

ずいぶん寒くなってきました

今回の私の答案は、先生とほとんど同じだと思います

ご指摘アドバイスなどをいただければ幸いです


以下答案

No.89371 - 2024/11/20(Wed) 09:03:47