[ 掲示板に戻る ]

記事No.89645に関するスレッドです

中学受験算数 / 独ソ不可侵条約
以下の図形の赤線の長さを求められないので教えてください。分数になるらしいです。
No.89622 - 2024/12/20(Fri) 21:28:53

Re: 中学受験算数 / 独ソ不可侵条約
図が正確じゃなくてすみません。しかも手書きで。
No.89623 - 2024/12/20(Fri) 21:31:13

Re: 中学受験算数 / IT
中学受験算数はピタゴラスの定理(三平方の定理)を使えますか?
(小学校では習わないようですが、正しく使っていればOKという説もありますが、使わなくても解ける問題が出題されるはず?)
ピタゴラスの定理(三平方の定理)を使う解法は、思いつきましたが、使わないのは思いつけません。

どこかの中学受験の過去問ですか?

No.89635 - 2024/12/21(Sat) 15:13:48

Re: 中学受験算数 / IT
Cから直線ABへ下した垂線の交点をHとし
三平方の定理をでAHを求める。

DからABへ下した垂線の交点をEとする。
後は容易です。

(参考図 反転してます)

No.89636 - 2024/12/21(Sat) 18:00:09

Re: 中学受験算数 / らすかる
これでどうでしょう

(1) 斜辺が4、底辺が2の3つの二等辺三角形EAB、AFE、BECを図の青線のように組み合わせる。
(2) Cを通りABと平行な直線(緑点線)とBEの交点をPとすると△CPEはCP=CE=2の
二等辺三角形となり、△CPE∽△BECだからPE=1。
四角形ABPCは平行四辺形なのでAC=BP=BE-PE=3、同様にBF=3。
(ここまでで△ABCと点Dは問題の図の通りになっています。)
(3) △GBF∽△GEAによりBG:EG=BF:EA=3:4なので、BG=(3/7)BE=12/7。
(4) △DBG∽△DCAによりBD:CD=BG:CA=12/7:3なので、
CD={3/(3+12/7)}BC=28/11。
よってx=28/11。

No.89643 - 2024/12/22(Sun) 15:02:36

Re: 中学受験算数 / IT
らすかるさん
 小学算数の範囲で出来るんですね!! 
2つの図形を組み合わせるのは、いろいろ考えましたが、3つを組み合わせるのは、全く考えませんでした。
初見で時間内に解けるのは、図形の天才かも知れません。

いちおう三平方の定理を使った解答を載せておきます
y=AH,h=CHとおくと
三平方の定理から
△CAH:y^2+h^2=3^2
△CBH:(2+y)^2+h^2=4^2
2式の差からy=3/4
x:4=EH:BH=(1+y):(2+y)=7:11
∴x=28/11

No.89644 - 2024/12/22(Sun) 15:39:15

Re: 中学受験算数 / IT
らすかるさんの図の一部(下記)でCQ=2-1/4=7/4 を求めてからでも出来ますね。
けっこういろいろな解法があるかも

No.89645 - 2024/12/22(Sun) 16:46:00

Re: 中学受験算数 / らすかる
なるほど、その方が簡単ですね。
CA,AE,EBが向きを変えながら同じ傾きであることに注目して
BEを7延長してEA'=4、A'C'=3とするとCC'//AA'//HEであることから
BD:DC=BE:EC'=4:7のようにしても出せますね。

No.89654 - 2024/12/23(Mon) 00:33:24

Re: 中学受験算数 / 独ソ不可侵条約
みなさんありがとうございます。
数学の先生が趣味で見たどっかの中学入試だそうで。
三平方は小学生は使えないです。相似とか同位角とか錯角は使うらしいです。

No.89662 - 2024/12/23(Mon) 21:13:34

Re: 中学受験算数 / 独ソ不可侵条約
先生の想定してた解き方としては、
角Bを◯、角Cを△とおく→∠CAEが◯になるようにEをとって補助線AEをひく→それに平行でDを通る直線を引いて錯角とか同位角とか外角とかでゴタゴタやる→◯、△、◯◯△の三角形が大量生産されて相似を利用
みたいな感じらしいです。

No.89663 - 2024/12/23(Mon) 21:30:32