[
掲示板に戻る
]
記事No.89679に関するスレッドです
★
ベクトルの内積
/ 数学苦手
引用
図の四角錐において、四角形BCDEは正方形、4つの三角形はすべて正三角形である。各辺の長さが2であるとき、次の内積を求めなさい。
ベクトルの→は省かせていただきます。
(1)ED・BE
(2)BA・CD
(3)EB・CA
(4)AC・AE
(5)DB・BA
始点が変わったりすると、どう考えたら良いのか分からなくなってきました。
教えていただきたいです。
No.89679 - 2024/12/27(Fri) 13:59:29
☆
Re: ベクトルの内積
/ X
引用
内積を考えるベクトルの大きさ、なす角が図から
容易にわかる場合(例えば(1))は、小問ごとに
始点を変えるのも一つの考え方ですが、
そうでない限りは
始点を固定し、
内積がわかりやすいベクトルに分解
して考えるのが合理的です。
↑AB=↑b,↑AC=↑c,↑AD=↑d,↑AE=↑e
と置くと、条件から
|↑b|=|↑c|=|↑d|=|↑e|=2 (A)
↑b・↑c=↑c・↑d=↑d・↑e=↑e・↑b=2 (B)
↑b・↑d=↑c・↑e=0 (C)
(∵)条件から△ABD≡△ACE≡△BCD
後は内積を取るベクトルを↑b,↑c,↑d,↑eの式で
表し、展開をして(A)(B)(C)を代入します。
例えば
(1)
↑ED・↑BE=(↑d-↑e)・(↑e-↑b)
=-(↑e-↑d)・(↑e-↑b)
=-{|↑e|^2-(↑d+↑b)・↑e+↑d・↑b}
=-(2^2-2-2)
=0
No.89680 - 2024/12/27(Fri) 14:27:10
☆
Re: ベクトルの内積
/ 数学苦手
引用
このやり方ならできそうです!
ありがとうございます!
No.89681 - 2024/12/27(Fri) 15:32:27