[ 掲示板に戻る ]

記事No.90010に関するスレッドです

無限等比級数を分けていいときの条件 / セルギー
画像の問題について、「落ちた距離」と、「跳ね返った距離」の2つの無限等比級数に分けて、それぞれの和を足して答えを求めました。が、模範解答では、落ちた距離も、跳ね返った距離も合わせた1つの等比級数として答えを求めていました。無限等比級数を、2つに分けて考えて答えがあっていましたが、それが許される行為なのかわかりません。分けてはいけないなら、分けてはいけない理由、分けても良いなら、分けても良い理由を教えていただきたいです。
No.90009 - 2025/03/01(Sat) 16:19:03

Re: 無限等比級数を分けていいときの条件 / セルギー
画像を添付し忘れました
No.90010 - 2025/03/01(Sat) 16:20:46

Re: 無限等比級数を分けていいときの条件 / らすかる
一般には分けられません。
例えば
1+1/2-1
+1/3+1/4-1/2
+1/5+1/6-1/3
+1/7+1/8-1/4
+…
=log2

1+1/2+1/3+1/4+…

-1-1/2-1/3-1/4-…
に分けると両方とも収束しませんし、
1-1/2-1/3+1/3-1/6-1/7+1/5-1/10-1/11+…

-1+1/2-1/4-1/5+1/4-1/8-1/9+1/6-1/12-…
に分けると両方とも収束しますが、和が-log2になります。
全項が正(または負、あるいは有限項のみ正または負)で
収束するならば分けても同じ値に収束しますが、
学習進捗状況によっては証明せずにこれを使うのはまずいかも知れません。

No.90013 - 2025/03/03(Mon) 06:38:49