[ 掲示板に戻る ]

記事No.90303に関するスレッドです

(No Subject) / 中3
十五の一の解き方が分かりません。
No.90303 - 2025/06/01(Sun) 16:35:14

Re: / X
点A,Bからx軸に下ろした垂線の足を
それぞれH,Iとすると
△CBI∽△CAH
よって条件から
BI:AH=CI:CH
=4:1 (A)
一方、点A,Bは放物線y=(1/4)x^2の点
で,点Aは第1象限、点Bは第2象限の点なので
A(t,(1/4)t^2),B(-u,(1/4)u^2) (B)
(0<t,0<u (C))
と置くことができます。
(A)(B)から
(1/4)u^2:(1/4)t^2=4:1
これより
u^2:t^2=4:1
4t^2=u^2
(2t-u)(2t+u)=0
よって(C)より
u=2t
となるので
OI:OH=u:t=2:1 (D)

ここで、点(0,2)を点Dとすると
(台形BIOD)∽(台形ADOH)
なので(D)より
BI:OD=OI:OH=2:1
よって
BI=2OD
なので
(1/4)u^2=4
これより
u^2=16
よって(C)より
u=4
となるので
B(-4,4)

よって直線ABの傾きは
(0-4)/{0-(-4)}=-1
なので求める方程式は
y=-x+2
(もっと簡単な方法があるかもしれません。)

No.90306 - 2025/06/01(Sun) 17:39:08

Re: / WIZ
Xさん、
> (0-4)/{0-(-4)}=-1

上記は点Bと点Dの座標から直線ABの傾きを計算しているのであれば、
(2-4)/{0-(-4)} = -1/2 の間違いだと思います。

以下別解 (簡単になった訳ではありません。)

(1)
直線ABはy切片が2なので y = px+2, 但し p < 0 とおけます。
放物線との交点は (1/4)x^2 = px+2 より x = 2p±√(4p^2+8) となります。

点Aのx座標をa, 点Bのx座標をb, 点Cのx座標をcとすると、
a > b より a = 2p+√(4p^2+8), b = 2p-√(4p^2+8) となります。
また、0 = pc+2 より c = -2/p です。

|CA|:|AB| = 1:3 より (c-a):(a-b) = 1:3 なので、
3(c-a) = a-b
⇒ 3(-2/p)-3(2p+√(4p^2+8)) = (2p+√(4p^2+8))-(2p-√(4p^2+8))
⇒ -6/p-6p = 5√(4p^2+8)
⇒ -6(1+p^2) = 5p√(4p^2+8)
⇒ 36(1+2p^2+p^4) = 25(p^2)(4p^2+8)
⇒ 0 = 64p^4+128p^2-36
⇒ 0 = 16p^4+32p^2-9 = (4p^2)^2+8(4p^2)-9 = (4p^2-1)(4p^2+9)

4p^2 > 0 より 4p^2 = 1, p < 0 より p = -1/2 となり
直線ABは y = (-1/2)x+2 となります。

(2)
直線ABはx切片が-3なので y = p(x+3), 但し p > 0 とおけます。
放物線との交点は 2x^2 = p(x+3) より 2x^2-px-3p = 0 となり
x = {p±√(p^2+24p)}/4 となります。

点Aのx座標をa, 点Bのx座標をbとすると、
a < b より a = {p-√(p^2+24p)}/4, b = {p+√(p^2+24p)}/4 となります。

|CA|:|AB| = 4:5 より (a-c):(b-a) = 4:5 なので、
5(a-c) = 4(b-a)
⇒ 5{p-√(p^2+24p)}/4-5(-3) = 4{p+√(p^2+24p)}/4-4{p-√(p^2+24p)}/4
⇒ 5p+15*4 = 8√(p^2+24p)+5√(p^2+24p)
⇒ 5p+60 = 13√(p^2+24p)
⇒ 25(p^2+24p+144) = 169(p^2+24p)
⇒ 0 = 144(p^2+24p)-25*144 = 144(p^2+24p-25) = 144(p-1)(p+25)

p > 0 より p = 1 となり、直線ABは y = x+3 となります。

No.90323 - 2025/06/03(Tue) 18:08:26

Re: / X
>>WIZさんへ
ご指摘ありがとうございます。

>>中3さんへ
ごめんなさい。WIZさんの仰る通りです。

No.90326 - 2025/06/04(Wed) 18:07:46