[ 掲示板に戻る ]

過去ログ閲覧モード

関係式 / 中3
宜しくお願い致します。
a + b + c = 0
Sn = a^n + b^n + c^n
のとき,Sn(n=2,3,4,5,6,7,8,9)の間に
たとえば 関係式 7*S2*S5-10*S7=0が成立する。
   他の関係式を求めよ。

No.9394 - 2010/01/11(Mon) 11:54:27

Re: 関係式 / 我疑う故に存在する我
恐らく環準同型
f : C[S2,S3,S4,S5,S6,S7,S8,S9] → C[a,b,c]/(a + b + c),
f(Sj) = a^j + b^j + c^j の kernel の生成元を問う問題だと思うが、
Ker f は整係数多項式で生成されるから、GB ですぐ解ける。

No.9434 - 2010/01/15(Fri) 23:24:16

Re: 関係式 / 中3
> 恐らく環準同型
> f : C[S2,S3,S4,S5,S6,S7,S8,S9] → C[a,b,c]/(a + b + c),
> f(Sj) = a^j + b^j + c^j の kernel の生成元を問う問題だと思うが、
> Ker f は整係数多項式で生成されるから、GB ですぐ解ける。


有難う御座います。

(1)生成元は最小何個でしょうか?
また ,余分な生成元を例示し 最小な生成元で 表示してください。

(2)生成元の一部(例えば49個を)を例示して下されば幸甚です。
(簡単な 関係式 7*S2*S5-10*S7=0 以外の 
  複雑な 世界の 誰も見たこともない のを!!!!!!!)

(3)a^j + b^j + c^j + d^j とか 幾らでも自然に拡張されますが
     そのような問に遭遇しない理由が在るのでしょうか?

No.9435 - 2010/01/16(Sat) 00:00:01
級数 / 中2
「a+ar+ar^2+ar^3+・・・,a+as+as^2・・・
を、初項が共通で、各項は正の実数からなり、しかも異なる級数とする。第一の級数の和がr,第二の級数の和がsの時、r+sを求めよ。」
解答には、「第一の級数の和は、a/(1-r^2)=rであるから〜」
と書いてあったのですが、その理由が分かりません。宜しくお願いします。

No.9393 - 2010/01/11(Mon) 10:09:25

Re: 級数 / フリーザ
うー・・・
a/(1-r)じゃないんですかね。

とりあえず0<t<1に対し
a+at+at^2+・・・=a/(1-t)
これが公比tと等しくなるのは
a/(1-t)=t⇔t^2-t+a=0・・☆
したがってr,sは☆の異なる2解である。
解と係数の関係より
r+s=1

No.9398 - 2010/01/11(Mon) 13:51:34

Re: 級数 / 中2
何日も返信遅れてしまって本当に申し訳ありません。PCが使えなくなってしまって・・・
よく解答を見てみると、「a/(1-r^2)=rであるから,r^2-r+aを得る」とか書いてあるので、解答のミスのようです(答えも1でした)。
(散々遅れた挙句申し訳ないのですが・・・)では、a(1-r)=rというのは何故なのでしょうか。宜しくお願いします。

No.9413 - 2010/01/14(Thu) 19:38:35

Re: 級数 / フリーザ
第一の級数の和がr,

↑この部分からです。

No.9430 - 2010/01/15(Fri) 12:30:50

Re: 級数 / 中2
級数の和は、何故a(1-r)なるのかがわからなくて・・・。
度々すいません。

No.9432 - 2010/01/15(Fri) 19:54:38

Re: 級数 / フリーザ
初項a公比rの等比数列の第1項からN項までの和は
a(1-r^n)/(1-r)・・・・☆なのはいいですか?

今は第n項までではなく無限に加えていくことに注意してください。なので
a+ar+ar^2+ar^3+・・・=lim(n→∞){a(1-r^n)/(1-r)}になります。
ここでこれが有限確定値をもつのは0<r<1となるときである
このとき
lim(n→∞){a(1-r^n)/(1-r)}
=a/(1-r)

わからない箇所あれば遠慮なく聞いてください

No.9433 - 2010/01/15(Fri) 22:34:38

Re: 級数 / 中2
何度も返信ありがとうございます。
「 lim(n→∞){a(1-r^n)/(1-r)}
=a/(1-r) 」
の所なのですが、何故nが極限だと、「 a(1-r^n)/(1-r)=a/1-r 」が成り立つのでしょうか?

No.9438 - 2010/01/16(Sat) 16:46:41

Re: 級数 / フリーザ
0<r<1なるrに対し
lim(n→∞)r^n=0です

No.9441 - 2010/01/16(Sat) 23:10:10

Re: 級数 / 中2
0に収束するんですね!お陰様でやっと理解することが出来ました。ありがとうございました!
No.9445 - 2010/01/17(Sun) 10:34:29
また分からない問題が・・・ / 中2
また分からない問題が出てきてしまいました・・・。宜しくお願いします。
「3桁の整数123から1つの数を消すことによってできる整数は12,13,23の3個である。ここに9桁の整数がある。10桁の整数の内1つの数を消すことによって、この9桁の整数になるような10桁の整数は何個あるか?」

No.9390 - 2010/01/10(Sun) 18:11:04

Re: また分からない問題が・・・ / らすかる
頭の桁を消して目的の整数になる10桁の整数は、
頭の数は1〜9のどれかだから9個
上から2桁目を消して目的の整数になる10桁の整数は、
2桁目は0〜9のどれかだから10個
ただし上から2桁目が最上位桁と同じである整数は
以前数えたから、その分を引いて9個
上から3桁目を消して目的の整数になる10桁の整数も10個だが
上から3桁目が上から2桁目と同じである整数は以前数えたから、
その分を引いて9個
以下「上から10桁目を消して…」まで同じなので、9×10=90個
先に少ない桁数で試してみるとわかりやすいです。

No.9391 - 2010/01/10(Sun) 20:11:12

Re: また分からない問題が・・・ / 中2
どういう状態になると重複しているのかが分からないまま混乱してしまっていましたが、お陰様で理解することが出来ました!ありがとうございました!
No.9392 - 2010/01/10(Sun) 21:45:16
対称式 / 中2
「a+b+c=0の時、次の式の値を求めよ。
(a^5+b^5+c^5)/(a^3+b^3+c^3)(a^2+b^2+c^2)」
という問題なのですが、そもそも対称式自体あやふやにしか知らないので、まったく分かりません。
解法を教えていただけないでしょうか。
宜しくお願いします。

No.9385 - 2010/01/10(Sun) 14:27:21

Re: 対称式 / らすかる
c=-a-b ですから
a^5+b^5+c^5=a^5+b^5-(a+b)^5=-5ab(a+b)(a^2+b^2+ab)
a^3+b^3+c^3=a^3+b^3-(a+b)^3=-3ab(a+b)
a^2+b^2+c^2=a^2+b^2+(a+b)^2=2(a^2+b^2+ab)
となります。
(以下略)

No.9387 - 2010/01/10(Sun) 15:34:48

Re: 対称式 / 我疑う故に存在する我
参考ページ
http://www004.upp.so-net.ne.jp/s_honma/mathbun/mathbun89.htm
---------------------------------------------------
附記
a^3 + b^3 + c^3 - 3abc = (a + b + c)(........)
だから、 a, b, c が実数であるとしても abc ≠ 0
ぐらいの条件を付けないと問題としておかしい。
---------------------------------------------------
附記 2
出題者はこのページを見て出題したんじゃないかという気もするが・・・・

No.9388 - 2010/01/10(Sun) 16:24:17

Re: 対称式 / 中2
御回答ありがとうございます。
>らすかる様
代入で解けたんですか!!基本対称式の方程式に表す方法ばかり考えてしまいこういう方法が思いつきませんでした。ありがとうございました!!
>我疑う故に存在する我様
自分で解いていたときは、a,b,cの方程式にあらわすところから先が分からず、困っていたのですが、このページのおかげでこの方法も分かりました。ありがとうございました!!

No.9389 - 2010/01/10(Sun) 18:04:29
ベクトルの範囲図示? / to
三角形OABで

→OP=s(→OA)+t(→OB)とする

s≧0、t≧0 s+t≦(1/2)を満たしながら動くときPの描く範囲を図示せよ。


答えはOAの中点をM
   OBの中天をnとし三角形OMNの内部と周上かなと思うのですがあってますか?


またこの問題の解法の記述を教えてください。

No.9383 - 2010/01/10(Sun) 00:45:36

Re: ベクトルの範囲図示? / rtz
おおよそ、
いきなりこの設問が与えられるパターンは稀で、
先にs+t=?という小問がある場合が多いでしょう。

その場合は、

上の問題より、s,t≧0、s+t=k (k≧0)であるようなとき、
Pは〜であるような線分上にある。
よって0≦k≦1/2から、求める領域(範囲)は〜。

としては如何。

No.9384 - 2010/01/10(Sun) 03:12:31
よろしくお願いします。 / スペード
考えてみても、イマイチよく分かりません。
どうか回答よろしくお願いします。

答えは、ツ:12 テ:54 ト:6 ナ:16 ニ:16  
    ヌ:18 ネ:82    だそうです。

No.9374 - 2010/01/08(Fri) 19:58:26

Re: よろしくお願いします。 / ヨッシー
(1)
2色で塗る場合
 真ん中に来る色が3通り、両端が2通りで、3×2=6(通り)
3色で塗る場合
 3×2×1=6(通り)
合計 6+6=12(通り)
(2)
2色で塗る場合
 色の選び方は3通り
 塗り方は2通りで、合計2×2=6(通り)
3色で塗る場合
 3マス2マス1マスで塗る場合
  色の選び方が3×2×1=6(通り)
  塗り方は、同じ色で3マス塗るのが2通り。
  残り3マスを2色で塗るのが3通り。
  合計6×2×3=36(通り)
 2マス2マス2マスで塗る場合
  ABC BCA 
  BCA ABC
 のいずれかの塗り方で、色の振り分け方が6通りあるので、
  2×6=12(通り)
 合計 6+36+12=54(通り)
(3)(i)
 色の選び方が3通り、塗り方が2通りで 6通り・・・ト
(ii)
 BDFHすべて青だと、残りの4カ所に赤か黄を好きなように
 置けばいいので 2×2×2×2=16(通り)・・・ナ
 BDFH3つ青だと、1つは黄で、その置き方が4通り
 青と青にはさまれた2マスには、赤、黄を好きなようにおけ、
 青と黄にはさまれた2マスは、赤しか置けないので
 4×2×2×1×1=16(通り)・・・ニ
 BDFHのうち2つ青、2つ黄だと
 青と青、黄と黄が向かい合う置き方は2通り、角には赤しか置けないので
 2×1×1×1=2(通り)
 青と黄が向かい合う置き方は4通り、角には2色置けるところが2カ所、
 赤しか置けないところが2カ所なので、
 4×2×2×1×1=16(通り)
 合計 2+16=18(通り)・・・ヌ
 BDFHのうち、1つ青、3つ黄は、ニと同じで16通り
 BDFH、すべて黄は、ナと同じで16通り
 合計
 16+16+18+16+16=82(通り)・・・ネ

No.9376 - 2010/01/08(Fri) 23:11:10

Re: よろしくお願いします。 / スペード
丁寧な解説ありがとうございました。
昨日のうちに返信していただいたのに、お礼が遅れてしまってすみませんでした。
いまから、理解する作業をしたいと思っています。
また質問etc...があったら、よろしくお願いします!!

No.9382 - 2010/01/09(Sat) 19:19:08
1次変換 / さっきー
行列A={(a,b),(c,d)}((a,b)が1行、(c,d)が2行のつもりです)によって定まるxy平面の1次変換をfとする。原点以外のある点PがfによってP自身に移されるならば、原点を通らない直線lであって、lのどの点もfによってlの点に移されるようなものが存在することを証明せよ。


直線lをy=mx+n(m≠0かつn≠0)、l上の点(x,y)がfにより移る点(x',y')としますと、要は、

「y'=mx'+n(m≠0かつn≠0)が成り立つための必要十分条件が(1-a)(1-d)-bc=0であることを示す」

ことができればよいのでは?というところまではこれましたが、このあと、

(x,y)=(0,n)+t(1,m)(tは任意の実数)

とおいて、x'=at+b(n+tm)、y'=ct+d(n+tm)ともとめて、x'とy'をy=mx+nに代入してみましたが、複雑な式が出てきて意味がわからなくなりました。ここにきて解き方が間違っているような気がしてきました。
1次変換は苦手で、最初から自信がありません。この問題はどのように解くのでしょうか。教えてください。お願いします。

No.9369 - 2010/01/07(Thu) 23:15:58

Re: 1次変換 / 我疑う故に存在する我
「一次変換」は全単射の意味で使っているものと解釈する。
>行列A={(a,b),(c,d)} (a,b)が1行、(c,d)が2行
行列 A = {(a, b), (c, d)} 但し、 (a, b) が 1 行、(c, d) が 2 行
と言う意味ですね。

P = (1, 0) としても一般性を失わない。よってその一次変換は

X = x + by
Y =   dy, d ≠ 0 として良い。

b = 0 の場合は x = 1 で表される直線として良く、

そうでない場合

y = {(d - 1)/b}x + 1

が求める物(一例)である。
(実際それが一例である事、及び、その式を求めることは単なる計算なので略する。)

No.9375 - 2010/01/08(Fri) 22:28:34

Re: 1次変換 / さっきー
御回答ありがとうございます。
私が問題自体を理解しきれていないせいなのですが、回答者様の御回答が正しいということがよくわからないです。

”原点以外のある点PがfによってP自身に移されるならば”
これは行列Aが逆行列を持たないことの言い換えですよね。ここから(1-a)(1-d)-bc=0が出てくると思います。
したがって本問では、y=mx+n上の任意の点(x,y)のfによる像(x',y')がy'=mx'+nを満たすような0でない実数m、nが存在するための条件が(1-a)(1-d)-bc=0であることを証明することになると思います。

(1,0)を(1,0)に移すようなfにおいて、l上の点がlに移る例を一つ見つければよいというような問題に言い換えられるのでしょうか?

それと「全単射」という言葉は聞いたことがありませんが、本問と関係はあるのでしょうか?

No.9377 - 2010/01/09(Sat) 00:43:56

Re: 1次変換 / 我疑う故に存在する我
>全単射
この場合は平面から平面への 1 : 1 写像、即ち ad - bc ≠ 0と言う意味で使っています。

>”原点以外のある点PがfによってP自身に移されるならば”
>これは行列Aが逆行列を持たないことの言い換えですよね。

違います。

>P = (1, 0) としても一般性を失わない。
直線 OP を x-軸にとっても良いという程度の意味です。
変換の係数は変わりますが一次変換である事にはかわり有りません。

No.9378 - 2010/01/09(Sat) 00:55:39

Re: 1次変換 / さっきー
>違います。
P(p,q)とします。題意より、
{(a,b),(c,d)}・(p,q)=(p,q) ((p,q)は列ベクトルです)
なので、
ap+bq=pかつcp+dq=qより、
(1-a)p-bq=0
-cp+(1-d)q=0
よって、{(1-a,-b),(-c,1-d)}・(p,q)=(0,0)なので、{(1-a,-b),(-c,1-d)}が逆行列を持つと(p,q)が原点になってしまうと思いますが、違いますでしょうか?

No.9379 - 2010/01/09(Sat) 09:55:49

Re: 1次変換 / 七
それは「行列Aが逆行列を持たない」ではなく
「行列E−Aが逆行列を持たない」ですね。
A−Eになるようにしてもいいですが。

No.9380 - 2010/01/09(Sat) 10:07:14

Re: 1次変換 / 我疑う故に存在する我
意図が余り伝わらなかった様なので、もう少し(幾何学的に)説明します。
(基本性質が分かっていないと、式の計算より難しいかも?)

# 先ずは問題の意図を良く理解して下さい。

>”原点以外のある点PがfによってP自身に移されるならば”
>これは行列Aが逆行列を持たないことの言い換えですよね。

全く違います。一次変換 f が恒等写像
(対応する行列が単位行列)の時、
任意の点 Q に対し、 f (Q) = Q となります。
また、 ad - bc = 0 なら平面の全ての点が
直線 OP 上の点に移ってしまい、求める直線が無くなります。
よって、 ad - bc ≠ 0 を仮定します。

i) この時一次変換 f は平行な二本の直線を
平行な二本の直線に写す。
(行き先が交わる二直線だったらおかしい。)
ii) f が同一直線上にない三点を固定すれば、 f は恒等写像である。
iii) k を一つの直線とすると、 k と f (k) は
一致するか平行か交わるかだが、交わるとすると、
その交点 K に対し f (K) = K が成立。

さて直線 OP に平行な直線 l については、
その様な ( 即ち f (l) = l ) 物 l が存在すればそれで終わりなので、
その様な物 l は存在しないとする。

直線 OP 上に無い点 Q を一つ取る。
f (Q) = Q なら、 f は、同一直線上にない三点 O, P, Q を固定するので、
恒等写像になってしまう。よって、 f (Q) ≠ Q
この時、(上記の仮定、性質などを組み合わせて)
Q と f (Q) を結ぶ直線に平行で、
P を通る物が求める l の一つである。

No.9381 - 2010/01/09(Sat) 10:14:34

Re: 1次変換 / さっきー
御回答ありがとうございました。
No.9386 - 2010/01/10(Sun) 15:11:17
数列 / √
よろしくお願い致します。

数列の問題です。
( )の中に入る数字を教えてください。

15 ・ 7 ・ 13/3 ・ 3 ・ ( ) ・ 5/3

No.9364 - 2010/01/07(Thu) 19:30:32

Re: 数列 / ヨッシー
第1項に15,第3項に13が見えているので、
第2項に14が見えていれば、うれしいですよね?
7を、無理矢理14の見える形にすると・・・
また、第4項の3を、無理矢理12の見える形にすると・・・

No.9368 - 2010/01/07(Thu) 22:37:30

有り難うございました / √
ヨッシーさん
なんで、そんなに頭いいんですか!!

分りました。
本当に有り難うございました。

No.9370 - 2010/01/07(Thu) 23:24:13
(No Subject) / さり
三角錐ABCDにおいて AB=√5 AC=2√5 AD=2√11 ∠BAC=∠CAD=∠DAB=90度
このとき頂点Aから△BCDに引いた垂線の長さを求めよ。

図形の体積を出してそれをもとに △BCD×垂線×1/3=体積という式を立てて解くと思うのですが、△BCDの面積の出し方がわかりません。
どう求めればいいのでしょうか、お願いします。

No.9362 - 2010/01/07(Thu) 16:14:08

Re: / さり
自己解決できました。ありがとうございました。
No.9363 - 2010/01/07(Thu) 16:49:53
(No Subject) / ☆
写真で質問したいのですが、どうやって貼付ければ良いのでしょうか?
No.9355 - 2010/01/06(Wed) 23:02:33

Re: / ヨッシー
いくつか方法がありますが、記事を書く欄の下の「ファイル」と
いうところに、保存した画像ファイルのファイル名を書く
(参照ボタンからたどるのが確実)のが、簡単です。

No.9359 - 2010/01/07(Thu) 06:54:54

Re: / ☆
わかりました!ありがとうございます!!
No.9372 - 2010/01/08(Fri) 19:22:14
不等式 / shiyo
不等式の問題です。
・不等式 2x+a>5(x-1)を満たすxのうちで、最大の整数が4であるとき、定数aの値の範囲を求めなさい。

(解答)2x+a>5(x-1)をxについて解くと、x<(a+5)/3
これを満たすxのうちで、最大の整数が4であることから、
4<(a+5)/3≦5 よって7<a≦10

となるのですが、なぜ4<(a+5)/3≦5 となり、4≦(a+5)/3<5ではだめなのでしょうか?

宜しくお願い致します。

No.9342 - 2010/01/06(Wed) 16:24:12

Re: 不等式 / rtz
(a+5)/3に4と5を実際に入れてみれば分かる。
それぞれの場合で
「ちゃんと最大の整数が4になるか?」を確かめればよい。

No.9343 - 2010/01/06(Wed) 17:13:29

Re: 不等式 / shiyo
rtzさん 有り難うございます!!
(a+5)/3が5であっても大丈夫だとわかりました。
逆に(a+5)/3が4だと不適ですね。

No.9344 - 2010/01/06(Wed) 17:30:51
連続で失礼します。 / ゆり〜
中3の問題です。たすきがけはまだ習ってないです。
?シ
x^2-4y^2+4yz-z^2
因数分解の仕方がわかりません。
?ス
xy+3x-2y=0を満たす自然数の組(x,y)を求めなさい。
解き方がわかりません
。?セ
x、yを整数とするとき、(x+y)(2x-y)^2=2を満たすx、yの値を求めなさい。
解き方がわかりません。
?ソ
x、yについての連立方程式
 2x-y=3
 x-3ay=2a^2
の解がx+y=3を満たすとき、負の数aの値を求めなさい。
解き方がわかりません。

ぜひ、教えてください!

No.9341 - 2010/01/06(Wed) 15:52:58

Re: 連続で失礼します。 / 七
> x^2-4y^2+4yz-z^2
=x^2-(4y^2-4yz+z^2)
=x^2-(2y-z)^2
あとは分かりますか?

> xy+3x-2y=0を満たす自然数の組(x,y)を求めなさい。
xy+3x-2y-6=-6
(x-2)(y+3)=-6
y+3>0だから-2<x-2<0にあてはまる
整数の組(x-2,y+3)は一組しかありませんね。

> x、yを整数とするとき、(x+y)(2x-y)^2=2を満たすx、yの
値を求めなさい。
(2x-y)^2>0よりx+y>0
に当てはまる
整数の組(2x-y,x+y)は二組しかありませんね。
x、yが整数となるのは?


> x、yについての連立方程式
>  2x-y=3
>  x-3ay=2a^2
> の解がx+y=3を満たすとき、負の数aの値を求めなさい。

2x-y=3,x+y=3の連立方程式を解きましょう。

No.9346 - 2010/01/06(Wed) 18:41:39

Re: 連続で失礼します。 / ゆり〜
詳しい説明ありがとうございました。
とてもわかりやすかったです!

No.9373 - 2010/01/08(Fri) 19:23:23
中3の三平方の定理の問題です。 / ゆり〜
1めもりが1?aの方眼紙に正方形ABCD(対角線が方眼紙にそってそれぞれ2?aの正方形です)がかいてあります。
面積が正方形ABCDの5倍となる正方形を方眼紙に書きなさい。
というもんだいで、どのようにして解けばよいのかわかりません。
教えてください!

No.9340 - 2010/01/06(Wed) 15:29:54

Re: 中3の三平方の定理の問題です。 / 七
正方形ABCDの面積が2cm^2であることは分かりますね。
5倍の10cm^2になる正方形の一辺は√10cmです。
方眼を利用して斜辺の長さが√10cmになる直角三角形を作ることができればいいですね。

No.9349 - 2010/01/06(Wed) 18:53:59

Re: 中3の三平方の定理の問題です。 / √
この正方形を作図するにはコンパスが必要ですよね。
No.9361 - 2010/01/07(Thu) 14:39:40

Re: 中3の三平方の定理の問題です。 / 七
> この正方形を作図するにはコンパスが必要ですよね。

方眼を利用する問題で作図は必要ありません。

No.9367 - 2010/01/07(Thu) 20:07:01

Re: 中3の三平方の定理の問題です。 / らすかる
> この正方形を作図するにはコンパスが必要ですよね。
方眼のマス目が使えますので、定規だけで描けます。

No.9371 - 2010/01/08(Fri) 01:58:21
(No Subject) / みかん
△ABCの内心をOとし 直線AOと辺BCの交点をDとする。
AB=6cm BC=8cm CA=5cmのときAO:ODを求めなさい。

この問題の解き方をお願いいたします。

No.9339 - 2010/01/06(Wed) 13:28:13

Re: / DANDY U
△ABO,△BCO,△CAO の底辺をそれぞれ AB,BC,CAと考えたとき、高さは等しいので
△ABO:△BCO:△CAO=AB:BC:CA=6:8:5
∴ △BCO=△ABC×8/(6+8+5)=(8/19)△ABC

よって、△BCOと△ABCの底辺をBCとするとき、高さの比は8:19
⇒ OD:AD=8:19
⇒ AO:OD=11:8
となります。

No.9350 - 2010/01/06(Wed) 21:04:12

Re: / みかん
丁寧にありがとうございました。理解できました!
No.9351 - 2010/01/06(Wed) 22:32:54
平面図形 / 美優

ΔABCにおいて次のことが成り立つ。
b<c⇔∠B<∠C
辺、対角の大小が対応することを証明したいのですが教科書に書いてなくて分かりません。
ぜひよろしくお願いします。
ちなみに教科書は啓林館数Aです。

No.9338 - 2010/01/06(Wed) 12:37:56

Re: 平面図形 / DANDY U
b>C のとき
辺AC上に、AC=ADとなる点Dをとります。
すると、∠ACB=∠ACD+∠DCB≧∠ACD=∠ADC=∠DBC+∠DCB>∠ABC
----------------
∠B<∠C のとき
辺ACのC側の延長線上に点Dを、∠ACB=∠ABDとなるようにとります。
すると、AB=AD=AC+CD>AC

となります。

No.9357 - 2010/01/06(Wed) 23:19:31

Re: 平面図形 / 美優
ありがとうございました!
とても助かりました。

No.9358 - 2010/01/07(Thu) 00:00:17
2次方程式 / aya
2次方程式、x^2-kx+k+1=0の2つの解の比が2;3になるように定数kの値を定めよ。

この問題の解き方、よろしくお願いします。

No.9335 - 2010/01/05(Tue) 23:22:59

Re: 2次方程式 / Bとん
解と係数の関係
α+β=k
αβ=k+1  ここでα:β=2:3なので
  解を2α,3αとおく
2α+3α=k
2α・3α=k+1

これら2つの式より
5α=k・・・・・?@
6α^2=k+1

さらにこれらを混ぜ 6α^2=5α+1
    6α^2−5αー1=0
    (6α+1)(αー1)=0
      α=−1/6,1
あとはこの2つのαにおけるそれぞれのkを?@でだすだけ

No.9336 - 2010/01/06(Wed) 01:01:51

Re: 2次方程式 / aya
分かりました。ありがとうございました。
No.9337 - 2010/01/06(Wed) 03:08:59
因数分解 / みどり
ここでつまずいて困っています。4問ありますがよろしくお願いします。
(1)a^-c^-ab+bc

(2)a^x+b^-b^x-a^

(3)x^+3xy+2y^+5x+7y+6

(4)3x^-5xy-2y^+5x+4y-2

^は二乗って意味で良いんですよね?

No.9319 - 2010/01/04(Mon) 23:11:07

Re: 因数分解 / らすかる
^は「乗」という意味です。
x^2 はxの2乗
x^3 はxの3乗
x^ は意味不明

No.9320 - 2010/01/04(Mon) 23:19:44

Re: 因数分解 / みどり
失礼しました。書き直して。
(1)a^2-c^2-ab+bc

(2)a^2x+b^2-b^2x-a^2

(3)x^2+3xy+2y^2+5x+7y+6

(4)3x^2-5xy-2y^2+5x+4y-2
これです。よろしくお願いします。

No.9321 - 2010/01/04(Mon) 23:32:20

Re: 因数分解 / Bとん
(1)a^2-c^2-ab+bc
=(a+c)(a-c)-b(a-c)
=(a+c-b)(a-c)


(2)a^2x+b^2-b^2x-a^2
a^2(x-1)-b^2x+b^2
=a^2(x-1)-b^2(x-1)
=(a^2-b^2)(x-1)
=(a+b)(a-b)(x-1)
(3)x^2+3xy+2y^2+5x+7y+6
  x^2+(3y+5)x+(2y^2+7y+6)
  x^2+(3y+5)x+(2y+3)(y+2)
  たすきがけ
   1           2y+3
   1            y+2
 (x+2y+3)(x+y+2)




(4)3x^2-5xy-2y^2+5x+4y-2
=3x^2+(5-5y)x-(2y^2-4y+2)
=3x^2+(5-5y)-2(y-1)^2
たすきがけ
 3      y−1
 1      −2(y−1)
これでたすきがけするとOK
よって
(3x+y−1)(x−2y+2)

No.9322 - 2010/01/05(Tue) 00:08:04

Re: 因数分解 / みどり
詳しい解説ありがとうございました
No.9323 - 2010/01/05(Tue) 01:38:06
ベクトル / みかげ
【問題】点A(1,2,3)、B(-1,1,2)から等距離にあり、y軸上にある点Pの座標を求めよ。
(答え) (0,4,0),(6,6,6)
解き方を教えて下さい。

【問題】球面(x-3)^2+(y+2)^2+(z+1)^2=25が平面Z=2と交わってできる図形は円である。
この円の中心の座標と半径を求めよ。
(答え) (3、-2,2) 半径4
座標の出し方は分かったのですが、半径のほうが分かりませんでした。
考え方を教えて下さい。

【問題】座標空間の直線L1は2点A(2,0,0)とB(0,1,1)を通る。直線L2は2点C(3,3,0)とD(0,0,a)を
通り、L1と交わっている。aの値はいくらか。また、L1とL2の交点座標を求めよ。
(答え)a=6/7,(2/3,2/3,2/3)
解き方が全く分かりません。教えて下さい。

よろしくお願いします。

No.9316 - 2010/01/04(Mon) 15:46:35

Re: ベクトル / フリーザ
A、Bから等距離にある点の集合は線分ABを法線にもつ平面になります。線分ABの方向ベクトルは(2,1,1)なので
平面の方程式は2x+y+z+d=0とかけ、この平面がA,Bの中点を通ることからd=-4となる
よって平面の方程式は2x+y+z-4=0となる・・・・・☆
y軸上→x=z=0を満たす点の集合なので☆に代入して
y=4したがって(0,4,0)

(6,6,6)はy軸上の点でないと思いますが。

No.9317 - 2010/01/04(Mon) 22:39:36

Re: ベクトル / フリーザ
(2)は三平方の定理ででるかと思います。
円周の1点と球の中心と円の中心を結ぶと直角三角形が現れます。
(3)はベクトル方程式をつかいましょう
L1;(0,1,1)+t*(2,-1,-1)=(2t,-t+1,-t+1)
L2;(3,3,0)+s*(3,3,-a)=(3+3s,3+3s,-as)
L1,L2が交わる⇔2t=3+3s,-t+1=3+3s,-t+1=-as 
を満たす実数s,tが存在

これを解いて答えを得ます。

No.9318 - 2010/01/04(Mon) 22:52:39

Re: ベクトル / みかげ
回答ありがとうございます!

>>平面の方程式は2x+y+z+d=0とかけ、
ここだけ分からなかったので、解説いただけるとありがたいです。
すみません。。。

No.9327 - 2010/01/05(Tue) 10:43:46
あめ玉 / おかだ
あめ玉がいくつかあります。
あめ玉の山の中から、最初は1個、次に3個、さらに5個というように順に奇数個ずつ、もうこれ以上とれなくなるまで除いていきます。そうすると7個のあめ玉が残りました。
さらに今度は、最初のあめの山から最初は2個、次に4個というように同じく順に偶数個ずつ取り去ると、最後に2個のあめ玉が残りました。さて最初にあめ玉がいくつあったのでしょうか?

No.9311 - 2010/01/04(Mon) 09:23:33

Re: あめ玉 / ヨッシー
(1+3+5+・・・)+7
で残った7個のあめのうち5個を、1個ずつ、1,3、5・・・に加えて
(2+4+6+・・・)+2
となったのですから、( )の中にある数字は5個で、
最初は
(1+3+5+7+9)+7
2回目は
(2+4+6+8+10)+2
であることがわかります。

No.9312 - 2010/01/04(Mon) 11:57:03

Re: あめ玉 / おかだ
ヨッシーさん
ありがとうです。

No.9313 - 2010/01/04(Mon) 12:40:26

Re: あめ玉 / らすかる
「同じ回数とった」とは書かれていませんので、他の可能性も考えなければならないのでは?
No.9315 - 2010/01/04(Mon) 15:41:12
指数関数・対数関数・微分積分 / みかげ
下の問題が、冬休みの課題として出ていて休み明けにテストになるのですが、
塾に行ってないし、学校もあいてないので誰にも聞けないので困っています。
量が多くて本当にすみません。よろしくお願いします。

【問題】次の式を計算せよ。
[3]√54*[3]√-2*[3]√16
【答え】−12
【質問】[3]√54と[3]√16を掛けるのは、
a>0,b>0でnが正の整数のとき、[n]√a*[n]√b=[n]√ab
という公式を使えばいいのかなというのは分かるのですが、
[3]√-2のように√内にマイナスがあるのですがどうやって解けばいいんでしょうか?

【問題】a>0のとする。a^(1/3)+a^(-1/3)=4のとき、次の値を求めよ。
(1)a+a^(-1)
(2)a^(1/2)+a^(-1/2) 【答】3√6
【質問】(1)は与えられた条件の式の両辺を3乗して、変形するというのが分かって解けて、答えが52だったんですけど、
(2)の解き方が分かりません。教えて下さい。お願いします。

【問題】y=9*3^xのグラフは,y=3^xのグラフとどんな位置関係にあるか。
【答え】x軸をもとにしてy軸方向に9倍拡大したもの
【質問】答えの「x軸をもとにして」の意味が分からなかったので、説明していただけるとありがたいです。
初歩的な質問ですみません。

【問題】log[2](7),log[4](55),3について、底を揃えることで大小関係を調べよ。
【答え】log[2](7)【質問】解いてみたのですが、答えが合いません。解き方を教えて頂きたいです。

【問題】(1/30)^20を小数で表したとき、小数第何位に初めて0でない数字が現れるか。
ただし、log[10](3)=0.4771とする。
【答え】小数第30位
【質問】解き方が分かりません。

【問題】次の関数の増減を調べよ。
y=-x^3+2x^2-2x+4
【答え】単調に減少する。
【質問】「単調に減少」というのはどういう事でしょうか?
また、私の計算では、微分した式を、解の公式で解を導くと複素数が出てきたのですが、
微分して解が複素数になるグラフというのは、どういう事でしょうか?

【質問】三次関数のグラフが極値をもつ条件というのは、微分した式を判別式を使いD>0のときというのは分かるのですが、
D=0、D<0の時グラフはどうなるのでしょか?

【問題】x=1で極小値4をとり、x=2で極大値5をとる三次関数f(x)を求めよ。
【答え】f(x)=-2x^3+9x^2-12x+9
【質問】f(1)=4、f(2)=5、f'(1)=0、f'(2)=0の連立4次(?)方程式を立てるのかなあと予想したのですが、
この後の計算ができません。解き方を教えてください。

【問題】次の3次方程式の異なる実数解の個数を答えよ。
2x^3-12x^2+18x+3=0
【答え】1個
【質問】微分して判別式で確かめるとD>0なので実数解は3個かなと思ったのですが、
解き方が間違っているのでしょうか?教えてください。

【問題】放物線y=x^2-4x+3と、この放物線上の点(4,3)、(0,3)における接線で囲まれた図形の面積を求めよ。
【答え】16/3
【質問】解き方を教えてください。

【問題】放物線y=2x−x^2とx軸で過去もれた図形の面積を直線y=kxが2等分するように、定数kの値を定めよ。
【答え】k=2-[3]√4
【質問】解き方を教えてください。

No.9309 - 2010/01/04(Mon) 02:12:32

Re: 指数関数・対数関数・微分積分 / Bとん
[3]√54*[3]√-2*[3]√16
まず54=(3^3)*2
  −2=(−1)*2
  16=2^4

これらかけると(−1)*(3^3)*(2^6)
=(−1)^3*(3^3)*(2^2)^3
これに[3]√をつけると
3乗のところが外れて
 −1*3*4=−12

【問題】a>0のとする。a^(1/3)+a^(-1/3)=4のとき、次の値を求めよ。
(1)a+a^(-1) =52

(2)の式を2乗します
 そうすると
a+2*(a)^(1/2)*(ーa)^(1/2)+a^(−1)
=a+a^(−1)+2*1

★(a)^(1/2)*(ーa)^(1/2)は指数法則で
 1になります
さらにa+a^(−1)は(1)より52

よって(2)の式を2乗すると54になります

a^(1/2)+a^(-1/2)=√54=3√6 




【問題】x=1で極小値4をとり、x=2で極大値5をとる三次関数f(x)を求めよ。
f(1)=4、f(2)=5、f'(1)=0、f'(2)=0の連立4次(?)方程式を立てる ので正解です

そうするとf(x)=ax^3+bx^2+cx+dとおき

4=a+b+c+d・・・・・1
5=8a+4b+2c+d・・・・2
0=3a+2b+c・・・・3
0=12a+4b+c・・・・4
先に極小値がくるので(極値x=1とx=2より)
グラフの外形を考えるとa<0です

2−1の式と3
2−1の式と4からaとbを割り出します
あとは随時計算します



次の3次方程式の異なる実数解の個数を答えよ。
2x^3-12x^2+18x+3=0
まず
2x^3−12x^2+18x=−3として
左辺をf(x)とします
左辺の微分から増減表・グラフまで行ってください

そうするとグラフが完成したら
右辺y=−3を引いてみてください
そうすると交点はひとつだけ。これが実数解です。



   

No.9310 - 2010/01/04(Mon) 03:02:39

Re: 指数関数・対数関数・微分積分 / みかげ
丁寧にありがとうございます。

最後の問題は、判別式を使うやり方は違うということでしょうか?

No.9314 - 2010/01/04(Mon) 15:30:19

Re: 指数関数・対数関数・微分積分 / X
横から失礼します。
>>Bとんさんへ
重箱の隅をつつくようで恐縮ですが
>>連立4次(?)方程式 

連立4元方程式
の誤りだと思います。

>>みかげさんへ
>>最後の問題は、判別式を使うやり方は違うということでしょうか?

3次関数の導関数による2次方程式に関して
判別式で確認できるのは
3次関数のグラフの極小点、極大点の個数の総数
であって、
3次関数のグラフとx軸の交点の個数
(つまり問題の3次方程式の実数解の個数)
ではありません。
Bとんさんが解説されている通りこの問題は、問題の方程式に対する
3次関数のグラフを描いて確かめる必要があります。

No.9324 - 2010/01/05(Tue) 10:24:30

Re: 指数関数・対数関数・微分積分 / X
>>【問題】y=9*3^xのグラフは,y=3^xのグラフとどんな位置関係にあるか。
>>x軸をもとにして
とは
x軸を基準に固定して
という意味です。
模範解答で分かりにくければ
y=9・3^x=3^(x+2)
と変形して
y=3^xのグラフをx軸方向に-2平行移動したもの
としても正解だと思います。

No.9325 - 2010/01/05(Tue) 10:34:40

Re: 指数関数・対数関数・微分積分 / X
>>【問題】log[2](7),log[4](55),3について、底を揃えることで大小関係を調べよ。
底を2に揃えると
log[4]55=(log[2]55)/log[2]4)=(1/2)log[2]55
=log[2]√55>log[2]√49=log[2]7
3=log[2]2^3=log[2]8=log[2]√64>log[2]√55
ということで大小関係は
log[2]7<log[4]55<3
となります。

No.9326 - 2010/01/05(Tue) 10:38:41

Re: 指数関数・対数関数・微分積分 / みかげ
Xさん
丁寧にありがとうございます。
文字が四種類あるのは4元というんですね。
よく分かりました。

No.9328 - 2010/01/05(Tue) 10:47:26

Re: 指数関数・対数関数・微分積分 / X
>>【問題】(1/30)^20を小数で表したとき、〜

x=(1/30)^20
と置くと
log[10]x=-20(1+log[10]3)
≒-20(1+0.4771)=-29.542
ここで例えば
y=0.03
について
log[10]y=-(2+log[10]3)≒-2.4771
で、0.03は小数点第2位に初めて0でない数字が現れる
ということを考えると…。

No.9329 - 2010/01/05(Tue) 10:52:59

Re: 指数関数・対数関数・微分積分 / X
>>【問題】次の関数の増減を調べよ。
>>y=-x^3+2x^2-2x+4
No.9324と話が重複するかもしれませんがご容赦下さい。

導関数=0なる2次方程式の解の個数にこだわっていますが
基本はそこにあるのではなく
関数f(x)に対して
f'(x0)>0⇔f(x)はx=x0において増加
f'(x0)<0⇔f(x)はx=x0において減少
というところにあります。
これらをつかって
x=x0が極小点
⇔x=x0に比較的近いx<x0においてf'(x)<0
かつx=x0に比較的近いx0<xにおいてf'(x)>0
かつf'(x0)=0
x=x0が極大点
⇔x=x0に比較的近いx<x0においてf'(x)>0
かつx=x0に比較的近いx0<xにおいてf'(x)<0
かつf'(x0)=0
となります。
これらを生かす方法としては
増減表を書く
ということが挙げられます。
関数の増減の問題で困ったら増減表を書くのが基本です。

y=-x^3+2x^2-2x+4 (A)
より
y'=-3x^2+4x-2
これを平方完成すると
y'=-3(x-2/3)^2-2/3<0
つまり(A)は単調減少するということになります。

みかげさんの仰るとおりこの問題の場合
(A)に対してy'=0の実数解xは存在しない
のですがこれはつまり
(A)の極値が存在しない
ということと同値です。

ではD=0の場合はどうなるのかですが、以下の例題を解いて考えてみてください。
例題)次の3次関数の増減表を書け
(1)y=x^3
(2)y=x^3-3x^2+3x-1

No.9330 - 2010/01/05(Tue) 11:03:42

Re: 指数関数・対数関数・微分積分 / X
>>【問題】放物線y=x^2-4x+3と、この放物線上の点(4,3)、(0,3)における接線で囲まれた図形の面積を求めよ。
まず
点(4,3)、(0,3)における接線 (A)
の方程式を求め、これらと問題の放物線のグラフを
一つのxy平面上に描きましょう。
この際、件の2本の接線の交点の座標も分かるようにします。
ここまでできたらアップして下さい。

No.9331 - 2010/01/05(Tue) 11:06:57

Re: 指数関数・対数関数・微分積分 / X
>>【問題】放物線y=2x−x^2とx軸で過去もれた図形の面積を直線y=kxが2等分するように、定数kの値を定めよ。
まず
放物線y=2x-x^2とx軸で囲まれた図形の面積(S1とします)
を求めます。
次に
放物線y=2x-x^2と直線y=kxとの原点以外の交点のx座標をa
として
放物線y=2x-x^2と直線y=kxとで囲まれた面積(S2とします)
をaを用いて表します。
更にaはkを用いて表せますので、S2はkを用いて表すことができます。
さて、題意からS1,S2について…。

No.9332 - 2010/01/05(Tue) 11:10:47

Re: 指数関数・対数関数・微分積分 / みかげ
Bとんさん
>>(a)^(1/2)*(ーa)^(1/2)は指数法則で
 1になります
ここが分かりません。教えていただけると有難いです。
今更すみません。よろしくお願いします。

No.9345 - 2010/01/06(Wed) 18:38:29

Re: 指数関数・対数関数・微分積分 / みかげ
Xさん
>>ではD=0の場合はどうなるのかですが、以下の例題を解いて考えてみてください
解いてみてD=0は定数となる所はあるが、極値は無いという事が分かりました。
しかしD<0となる場合は、f'(x)=0となるところが無いので定数となるところも無いという事ですよね?
この場合、グラフはどうなるのでしょうか?

>>【問題】放物線y=x^2-4x+3と、この放物線上の点(4,3)、(0,3)における接線で囲まれた図形の面積を求めよ。

>>【問題】放物線y=2x−x^2とx軸で過去もれた図形の面積を直線y=kxが2等分するように、定数kの値を定めよ。
上の2問は途中まで解いてみた(写真)のですが、何回やっても答えが合いませんでした。
どこが間違っているか指摘して頂けると助かります・・・
よろしかったらお願いします。
何度も本当にすみません。

No.9347 - 2010/01/06(Wed) 18:45:05

Re: 指数関数・対数関数・微分積分 / みかげ
追加です
No.9348 - 2010/01/06(Wed) 18:46:38

Re: 指数関数・対数関数・微分積分 / X
>>No.9348に対する回答
さて面積の求め方ですが
0≦x≦2

2≦x≦4
の範囲に分割して計算して和を取ります。
(図を見て理由を考えましょう。)
それぞれの範囲の領域の面積をS1,S2とすると
S1=∫[0→2]{(x^2-4x+3)-(-4x+3)}dx=…
S2=∫[2→4]{(x^2-4x+3)-(4x-13)}dx=…
∴求める面積をSとすると
S=S1+S2=…
(こちらの計算では
S1=S2=8/3,S=16/3
となりました。)


注)
2本の接線
y=-4x+3
y=4x-13
が放物線y=x^2-4x+3の軸である
x=2 (A)
に関して対称であることを証明していれば計算はもう少し
簡単になります。
この場合、上記の分割した二つの領域は(A)に関して対称ですので
S=2S1=…
となります。

No.9352 - 2010/01/06(Wed) 22:32:55

Re: 指数関数・対数関数・微分積分 / X
>>解いてみてD=0は定数となる所はあるが、〜
y=-x^3+2x^2-2x+4
のとき
y'=-3(x-2/3)^2-2/3
∴y'はx=2/3のとき最大値-2/3を取ります。
従ってグラフは
(i)x≦2/3のとき
単調減少であっても各点の傾きはxの増加に伴い
緩やかになっていきます。
(ii)2/3≦xのとき
単調減少で各点の傾きはxの増加に伴い急峻になっていきます。

グラフの形状としては点(2/3,88/27)でくびれるような感じになります。

No.9353 - 2010/01/06(Wed) 22:43:51

Re: 指数関数・対数関数・微分積分 / X
>>上の2問は途中まで解いてみた(写真)のですが〜
S1,S2の積分範囲を誤っています。
S1=∫[0→2](2x-x^2)dx=…
S2=∫[0→2-k]{(2x-x^2)-kx}dx=…
となります。
求めた値を
S1=2S2
に代入することに問題はありません。

No.9354 - 2010/01/06(Wed) 22:53:23

Re: 指数関数・対数関数・微分積分 / X
>>No.9345について
僭越ですが代わりに回答させていただきます。
これはおそらくBとんさんのタイプミスですね。
a^(1/2)+a^(-1/2)
を2乗すると
{a^(1/2)+a^(-1/2)}^2={a^(1/2)}^2+2{a^(1/2)}{a^(-1/2)}+{a^(-1/2)}^2
=a+2+a^(-1)
=…
となります。

No.9356 - 2010/01/06(Wed) 23:06:44

Re: 指数関数・対数関数・微分積分 / みかげ
Xさん
回答ありがとうございます

No.9353についてなんですが、なぜy’の最大値を境にグラフが変化するのでしょうか?
本当に何遍もすみません

No.9360 - 2010/01/07(Thu) 10:39:10

Re: 指数関数・対数関数・微分積分 / X
文章であれこれ説明するよりもグラフの慨形を見てもらった方が
理解が早いと思いますのでアップします。

No.9365 - 2010/01/07(Thu) 19:55:13

Re: 指数関数・対数関数・微分積分 / X
比較のため、y'=0なる二次方程式に対して
D=0
となる例として
y=-(1/3)(x-1)^3+1
のグラフの慨形もアップしておきます。
(接線を取り除くと、見た目には形状は殆ど変わらないように見えます。)

No.9366 - 2010/01/07(Thu) 19:57:18
全22697件 [ ページ : << 1 ... 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 ... 1135 >> ]