[ 掲示板に戻る ]

過去ログ閲覧モード

(No Subject) / スペード
以前質問させていただいたものです。(No.9374 - 2010/01/08(Fri) 19:58:26)

そこの(2)に「2マス2マス2マスで塗る場合
  ABC BCA 
  BCA ABC
 のいずれかの塗り方で、色の振り分け方が6通りあるので、  2×6=12(通り)」

というところがよく分かりません。
どこからABCが出てきたのでしょうか??

ワガガマかも知れませんが、出来るだけ早めに回答をいただけますでしょうか。

No.9480 - 2010/01/19(Tue) 21:58:38

Re: / ヨッシー
ABC
BCA
というのは、
左上と右下が同じ色、
中上と左下が同じ色、
右上と中下が同じ色ということで、この色配置のとき
A=赤、B=青、C=黄
A=赤、B=黄、C=青
A=青、B=赤、C=黄
A=青、B=黄、C=赤
A=黄、B=赤、C=青
A=黄、B=青、C=赤
の6通りの色の振り分け方があります。

BCA
ABC
についても、同様に6通りあります。

あわせて、12通りです。

No.9481 - 2010/01/20(Wed) 20:12:32

Re: / スペード
またまた丁寧な解説ありがとうございました!!
No.9482 - 2010/01/20(Wed) 20:32:50
関係式 / 邊
教えてください。
(1)x^3 = 1, a*x^2 + b*x + c =0 の とき,
  a,b,cの満たす関係式を求めよ。
(2)x^4 = 1, a*x^3 + b*x^2 + c*x + d = 0の とき,
  a,b,c,dの満たす関係式を求めよ。

No.9479 - 2010/01/19(Tue) 21:41:35

Re: 関係式 / 地下水
(1) x^3=1 より、x^3-1=(x-1)(x^2+x+1)=0、
x=1,(-1+i√3)/2,(-1-i√3)/2、よって、
x=1のときa+b+c=0,
x=(-1+i√3)/2のときx^2=(-1-i√3)/2、よって、
 a(-1-i√3)/2+b(-1+i√3)/2+c=0より、a=b=c,
x=(-1-i√3)/2のときx^2=(-1+i√3)/2、よって、
 a(-1+i√3)/2+b(-1-i√3)/2+c=0より、a=b=c。
(2) x^4=1より、x=-1,1,-i,i。
x=-1のとき-a+b-c+d=0
x=1 のときa+b+c+d=0
x=-iのときai-b-ci+d=0より、 a=cかつb=d
x=i のとき-ai-b+ci+d=0より、a=cかつb=d

No.9486 - 2010/01/20(Wed) 21:57:26
方程式の解 / 井出
宜しくお願い致します。
方程式 z^8-z^4+1=0
を解き、その各解zjの 虚部yj/実部xj を 求め
Tan[tj]=虚部yj/実部xj なる tj を求めよ。

また 上の 8次方程式の出所を述べよ。

No.9475 - 2010/01/19(Tue) 02:15:11

Re: 方程式の解 / 豆
出所を述べよといわれても、出題者の意図まで分らないので困りますね。
悪戯に煩雑な計算をさせる意味も分りかねるような。
それこそ、この問題の出典は何なのでしょうね?

最終回答するだけなら、z^4+1を両辺に掛ければ、z^12+1=0となるので、
-1の12乗根のうち-1の4乗根を除いた8つの根ですから、
そのままガウス平面で考えたほうが早いですね。
この下の問題も-1の10乗根で同様。

No.9477 - 2010/01/19(Tue) 15:59:32

Re: 方程式の解 / ast
sumathに何を言っても無駄です. 相手をした時点で負けです. このところちょこちょこ相手をしてしまう人がいるせいで棲み付いてしまってますので, ちょっとこらえて欲しいと思います.
No.9478 - 2010/01/19(Tue) 17:04:23
方程式の解 / 井出
宜しくお願い致します。
方程式 z^8-z^6+z^4-z^2+1=0
を解き、その各解zjの虚部yjを求めSin[tj]=yjとなるtjを求めよ。

また 上の 8次方程式の出所を述べよ。

No.9474 - 2010/01/19(Tue) 00:50:40
よろしくお願いします。 / Cut
立体を展開図にするために切る回数の公式

頂点−1=切る回数

この公式がなぜ成り立つか証明しなさい。

No.9466 - 2010/01/18(Mon) 20:40:09

Re: よろしくお願いします。 / ヨッシー
オイラーの多面体公式を認めるならば、
N面体の展開図は、N−1本の辺は2つの平面をつなぐために
2面と共有しており、他の辺はフリーです。
N面体の辺の数をMとすると、
 M−(N−1)=M−N+1
の辺が切られたことになります。

(頂点の数)+(面の数)−(辺の数)=2
より、
(頂点の数)+N−M=2

よって、切る回数=M−N+1=(頂点の数)−1
となります。

No.9471 - 2010/01/18(Mon) 21:53:45

Re: よろしくお願いします。 / Cut
どうもありがとうございます。
No.9473 - 2010/01/18(Mon) 22:51:24
よろしくお願いします。 / オイラーの多面体公式〜
(頂点の数)+(面の数)−(辺の数)=2

この公式がなぜ成り立つか証明しなさい。

No.9465 - 2010/01/18(Mon) 20:36:44
高1 平方根と式の値  / あつき
よろしくお願いします。

c=2√6−4のとき、
c^3+12c^2+47c+60=(c+□)(c+4)(c+□)=□√6

□の部分がわかりません。

No.9464 - 2010/01/18(Mon) 19:30:07

Re: 高1 平方根と式の値  / ヨッシー
c+4 が見えているので、c^3+12c^2+47c+60 を c+4 で割って、
 c^3+12c^2+47c+60=(c+4)(c^2+8c+15)
さらに因数分解して、
 c^3+12c^2+47c+60=(c+4)(c+5)(c+3)
c=2√6-4 を代入して、
 (c+4)(c+5)(c+3)=2√6(2√6+1)(2√6-1)=46√6

No.9468 - 2010/01/18(Mon) 21:33:11

Re: 高1 平方根と式の値  / あつき
教えていただきまして有り難うございました。
No.9470 - 2010/01/18(Mon) 21:42:18
教えてください / ふ
お願いします。
(1)ひもが一本ある(長さをL>0 とする).このひもを使い,三角形を作るとすると,面積最大の三角形
は正三角形になることを示しなさい.また,そのときの面積も答えなさい

No.9460 - 2010/01/18(Mon) 13:39:00

ヒント / フリーザ
面積が最大になるには2等辺三角形になることが必要です。
No.9472 - 2010/01/18(Mon) 22:24:12

Re: 教えてください / 豆
別解として、
ヘロンの公式をつかってよいなら、3辺の長さをa,b,cとすれば、
s=L/2として、面積は
S=√(s(s-a)(s-b)(s-c))≦√s((s-a+s-b+s-c)/3)^(3/2)
 =s^2/(3√3)=√3L^2/36
等号成立は2L-a=2L-b=2L-c つまりa=b=cのとき

No.9476 - 2010/01/19(Tue) 10:53:56
/ 泉太
おねがいします。
(1)sin(Pi/10)の値を「誰にとっても、もっとも自然な 方法で」求めよ。
(2)もっとも不自然な 方法で もとめよ。

No.9458 - 2010/01/18(Mon) 10:40:36

Re: 値 / 我疑う故に存在する我
>誰にとっても、もっとも自然な 方法で
その様な方法は存在しない。
>もっとも不自然な 方法
それも存在しない。

一例
1/10 = 8/5 - 3/2
と部分分数分解して加法定理。
8/5 の分子を偶数にするところがミソ。
1/10 = 3/5 - 1/2
より少しはマシ。

No.9459 - 2010/01/18(Mon) 13:04:50

Re: 値 / 泉太
> >誰にとっても、もっとも自然な 方法で
> その様な方法は存在しない。
> >もっとも不自然な 方法
> それも存在しない。
>
> 一例
> 1/10 = 8/5 - 3/2
> と部分分数分解して加法定理。
> 8/5 の分子を偶数にするところがミソ。
> 1/10 = 3/5 - 1/2
> より少しはマシ。


おねがいします。以下のように 読み替えておねがいします;
(1)sin(Pi/10)の値を「我疑う故に存在する我」 様にとって、もっとも自然な

 方法で」求めてください。
(2)「我疑う故に存在する我」 様にとって もっとも不自然な 方法で 求めてくだ

さい。

tan(Pi/17)についてもお願いします。

No.9461 - 2010/01/18(Mon) 14:02:25

Re: 値 / 我疑う故に存在する我
1/10 = -2/5 + 1/2
の方が良かった。
かも。

No.9463 - 2010/01/18(Mon) 15:18:28
二次関数と直線の交点 / uriuri
中3ですが多分範囲は高1のものだと思います。
学校の宿題で出たのですが、まったく答えがわかりません。
お助け下さい!!

直線y=m(x-2)+4と放物線y=x^2-2xとは常に相異なる2点で交わる。その理由を二次方程式の判別式を使って述べよ。

という問題です。
ただしmはy軸と平行ではないそうです。
よろしくお願いします。

No.9455 - 2010/01/18(Mon) 00:06:17

Re: 二次関数と直線の交点 / 七
中3と言うことですが入試は終わったのですか?
もしまだならこんなことに時間を割くべきではありません。
宿題であっても無視しなさい。

No.9456 - 2010/01/18(Mon) 07:20:50

Re: 二次関数と直線の交点 / moto
●付属校・中高一貫校では、
中2で一般の高校1年で学習するたすきがけ等に触れる学校がありますので、
中3で高1の範囲に触れることもありえますが、
★学校の宿題なら、全く触れていないものは出ないはずです。
★内容的に考えてきなさいというような宿題なら、
 ご自分で考えて、解説・授業を受けるのがベストだと思います。

●どうしてもというなら
一般の中3では触れても話程度の範囲です。単純な計算問題等ではないので、
ご自分の状況(学年だけだと誤解が生じやすくなります)を簡単に添え
どこまで学習したか、どこまで考えたかを述べると、
お答えになる方の一助になると思います。

No.9462 - 2010/01/18(Mon) 14:58:03
(No Subject) / 二次関数
y=x^2+ax+b…?@があり、その軸は直線x=3/2、a,bは定数
(1)aの値を求めよ
(2)放物線?@がx軸のx>-1の部分と異なる2点で交わるようなbの値の範囲
(3) (2)のとき、放物線?@の頂点をA、放物線?@とx軸との交点をB,Cとする。
△ABCが正三角形になるようなbの値

解答は
(1) a=−3
(2) −4<b<9/4
(3) b=−3/4
です
解説お願いします。

No.9451 - 2010/01/17(Sun) 19:57:43

Re: / 山田太郎
ぼくもその問題解いた人間の一人なのですが、放物線が座標のわかっている1点を通るという条件が抜け落ちていますよね?(具体的な数字は覚えていませんが・・・)
そうじゃないと解けませんよ。

(1)
まず?@に点の座標のx,yの値を代入して得られた式をbについて解きます
それを?@x^2+ax+bに代入して平方完成すると軸は-a/2となり、これが3/2と等しいことから
-a/2=3/2
よって a=-3

(2)
軸の位置は固定されていますので f(-1)≧0 , D>0 の2つの条件を満たせばいいと思います。

(3)
解の公式 x=(-b±√b^2-4ac)/2a を用いるなどして放物線がx軸とどこで交わるのか、すなわち点B,点Cのx座標を求めます。それらの差が正三角形の一片の長さABです。
放物線の頂点のy座標がbを使って表せるはずですよね?それがABを底辺としたときの高さとなり、仮にhとおきましょう。
正三角形における比なので h:AB=√3:2 すなわち h*2=2*√3
計算が少々面倒でしたがこれを解けばO.K.だとおもいます。

No.9452 - 2010/01/17(Sun) 21:22:43

Re: / 山田太郎
>正三角形における比なので h:AB=√3:2 すなわち h*2=2*√3
すみません、訂正します
>正三角形における比なので h:AB=√3:2 すなわち h*2=AB*√3

No.9453 - 2010/01/17(Sun) 21:25:31
高校数学?T二次関数 / 山田太郎
問題は以下です。
二次不等式 x(x-b)<1を満たす整数xがちょうど2個となるような実数bの範囲を求めよ。

解答は
-3/2≦b≦0,0≦b≦3/2
とあります

放物線が軸に平行な直線を切り取る範囲、のようなイメージでしょうか?

解答の解説お願いします。

No.9444 - 2010/01/17(Sun) 10:00:13

Re: 高校数学?T二次関数 / 七
> 解答は
> -3/2≦b≦0,0≦b≦3/2
> とあります


-3/2≦b<0,0<b≦3/2
ではありませんか?

> 放物線が軸に平行な直線を切り取る範囲、のようなイメージでしょうか?

それでもいいと思います。軸というのはx軸ですよね?

No.9447 - 2010/01/17(Sun) 14:49:38

Re: 高校数学?T二次関数 / 山田太郎
>-3/2≦b<0,0<b≦3/2
>ではありませんか?


すみません、そのとおりです。

どういう手順を踏んでそのような解答に行き着くか、できれば具体的に教えていただけないでしょうか?

No.9448 - 2010/01/17(Sun) 19:05:31

Re: 高校数学?T二次関数 / 七
y=x(x−b)=f(x)とy=1で
y=f(x)がy=1より下になるxの範囲が不等式の解です。
f(0)=0<1ですから解の範囲には整数0が必ず含まれます。
b>0のとき
f(−1)=1+b>1ですから整数−1が解に含まれることはありません。
f(1)=1−b<1ですから整数1も必ず含まれます。
ならば2が含まれなければいいのですから
f(2)>1であればいいですね。
b<0のときも同様に考えればどうでしょう?

No.9450 - 2010/01/17(Sun) 19:46:59

Re: 高校数学?T二次関数 / 山田太郎
腑に落ちました。
ありがとうございました

No.9454 - 2010/01/17(Sun) 21:26:39

Re: 高校数学?T二次関数 / 七
うっかりしていました
> f(2)>1であればいいですね。
f(2)≧1であればいいですね。
でした。

No.9457 - 2010/01/18(Mon) 09:49:06
(No Subject) / ななこ
Kを実数の定数とする2次方程式
x^2+2kx+3k+4=0

が実数解をもつのはk>□またはk<□のときである。
また、この2次方程式が正の重解をもつのはk=□のときで
そのときの重解は x=□である

大学受験生です
こちらの問題がわかりません
どなたか教えてください
よろしくお願いします。

No.9442 - 2010/01/17(Sun) 02:51:18

Re: / はちこ
判定式 D/4=b'^2-ac を用いる
b'=k , a=1 , c=3k+4 を代入して
D/4=k^2-1*(3k+4)=k^2-3k-4
ここで
・D/4≧0のとき実数解をもつ
・D/4=0のとき重解をもつ

これを解いてください。二つ目は 正 の 重解という点にご注意を。

教科書をきちんと読みましょう。

No.9449 - 2010/01/17(Sun) 19:43:37
積分の問題です / さく
はじめまして、高校2年生です。
積分の問題で分からないものがあったのでお聞きしたいと思います。

不等式x^2+y^2≦8の表す領域が放物線y=(1/2)x^2によって分けられる二つの部分の面積を求めよ

です。
ちなみに答えは2π+4/3,6π−4/3になるそうですが、全く手が出ません。
よろしくお願いします。

No.9440 - 2010/01/16(Sat) 23:00:03

Re: 積分の問題です / 七
円x^2+y^2=8と放物線y=(1/2)x^2との交点を(y座標が正であることに注意して)求めて
交点を通る半径でできる扇形の面積と半径と放物線に囲まれる部分の面積との和あるいは差で求めればいいですね。

No.9443 - 2010/01/17(Sun) 06:45:25
相似?三平方 / to
図がないのですが申し訳ありません

三角形ABCが角Bが直角の直角三角形で
AB=6 BC=10で
AB上にD、AC上にF、BC上にEがあり
DF平行BC
角DEF=90°
3DE=4EFである


EFの長さを求めよ。
この問題の解法をお願いします

No.9427 - 2010/01/15(Fri) 00:42:47

Re: 相似?三平方 / ヨッシー
△DEFは、EF:DE:DF=3:4:5 の直角三角形なので、
F(0,0)、D(5,0) とすると、E(9/5,-12/5) とすると、
DE=4、EF=3 となります。

このとき、Bは(5,-12/5) であり、Fを通って、傾き3/5 の直線と、
BDの交点Aは、(5,3) となります。

座標上は、AB=27/5 ですが、実際はAB=6 なので、
座標上3であるEFは、実際には、10/3 となります。

No.9428 - 2010/01/15(Fri) 06:10:55

Re: 相似?三平方 / to
ありがとうございます
わかりました

No.9446 - 2010/01/17(Sun) 12:26:02
化学システム / qp
5kgの塩が溶解している水溶液100L入りの容器がある。この容器に30L/minの速さで純水を注ぎ、一方では同じ速さで溶液を流出させる(定常状態)。容器中の溶液は十分撹拌されていて濃度が均一であると仮定する。
このとき時刻tにおいて容器中に残っている塩の量をgとするときgをtの関数で表せ。
次にこの容器の底が塩のかたまりの層で覆われた場合を考える。このかたまりは最後まで残っており、溶ける速さは水溶液中に溶けている塩の濃度と、飽和溶液の濃度(0.3kg/L)との差に比例すると仮定した場合、溶液中に溶けている塩全量を時間tの関数で表せ。ただし、水槽中の水が純水ならば溶ける速さは1kg/minである。

よろしくお願いします

No.9426 - 2010/01/15(Fri) 00:39:46

Re: 化学システム / ヨッシー
塩の量がgのとき、微小時間 dt の間に出て行く水は、
30dtLで、含まれる塩の量は
 30dt×g/100
入ってくる塩の量は無いので、塩の量の変化量dgは、
 dg=-30gdt/100
 dg/dt=-0.3g
これを解いて、
 g=-0.15g^2+C
t=0のときg=5なので
 g=5−0.15g^2

とりあえず、ここまで。

No.9439 - 2010/01/16(Sat) 20:42:15
複素数 / まあ
a,b,cがすべて複素数のとき(a^b)*(a^c)=a^(b+c)とならないことを示したいのですが手のつけ方が分かりません。アドバイスお願いします。
No.9425 - 2010/01/15(Fri) 00:27:14

Re: 複素数 / 我疑う故に存在する我
a^b の定義は何ですか ?
No.9431 - 2010/01/15(Fri) 17:42:04

Re: 複素数 / まあ
a^b=exp(bloga)です。
No.9436 - 2010/01/16(Sat) 01:11:52

Re: 複素数 / 我疑う故に存在する我
複素変数の log は多価だから、定義になっていない。
それに a = 0 の時 log a は定義されない。

No.9437 - 2010/01/16(Sat) 01:45:31
組み合わせ / たかえ
組み合わせの問題です。よろしくお願いします。

0.1.2.3の数字が1つずつ書いてある4枚のカードがあります。これらの中から3枚を選び、3桁の整数を作るとき

?@3桁の整数は全部で何通りできますか?
?A奇数は何通りですか?

No.9416 - 2010/01/14(Thu) 23:04:13

組み合わせ / たかえ
回答はわかっています。

?@18通り
?A8通り

初めての投稿で、書き方不十分でした。申し訳ありません。ちなみに社会人です

No.9417 - 2010/01/14(Thu) 23:06:02

Re: 組み合わせ / ヨッシー
(1)
百の位は0以外の3通り
十の位は、百の位で選んだ数以外の3通り
一の位は、残り2通り
以上より 3×3×2=18

(2)
一の位は1か3の2通り
百の位は、一の位で選ばなかった奇数か2の2通り
十の位は残り2通り
以上より 2×2×2=8

No.9420 - 2010/01/14(Thu) 23:46:03

Re: 組み合わせ / たかえ
ありがとうございました。難しく考えすぎていました^^

とてもわかり易くて、助かりました。

No.9422 - 2010/01/15(Fri) 00:10:26
高1 因数分解 / あつき
数?T 因数分解です。よろしくお願いします。

x^2y+2xy^2−x^2+4y^2−xy−x−6y+2

No.9415 - 2010/01/14(Thu) 22:35:38

Re: 高1 因数分解 / ヨッシー
xで整理すると
 x^2(y-1)+x(2y^2-y-1)+4y^2-6y+2
 =x^2(y-1)+x(y-1)(2y+1)+2(y-1)(2y-1)
 =(y-1){x^2+x(2y+1)+2(2y-1)}
 =(y-1)(x+2)(x+2y-1)

No.9419 - 2010/01/14(Thu) 23:43:34

Re: 高1 因数分解 / あつき
教えていただきまして、ありがとうございました!
No.9424 - 2010/01/15(Fri) 00:20:49
高2・接線 / 匿名
いつもお世話になっています。

曲線C:y=x^2/2 上の点(-4,8)における接線をL1とし、
L1と直交するCの接線をL2とする。
このときL1とL2の方程式を求めよ。

L1の方程式はy=-4x-8
と求めたのですが、

L1の傾きが-4だからL2の傾きは1/4
よってL2と曲線Cの接点のx座標は1/4

と解答にあるのですが、
どうして「L2と曲線Cの接点のx座標は1/4」
とわかるのでしょうか?

初歩的なことですが
宜しくお願いします;

No.9409 - 2010/01/14(Thu) 16:29:16

Re: 高2・接線 / 七
> L1の方程式はy=-4x-8
> と求めたのですが、

L1の傾き−4はどのようにして求めたのですか?

No.9410 - 2010/01/14(Thu) 17:19:21

Re: 高2・接線 / 匿名
Cの方程式を微分したものに
(-4,8)の-4を代入しました!

No.9423 - 2010/01/15(Fri) 00:16:51

Re: 高2・接線 / 七
それならすぐわかると思うのですが…。
No.9429 - 2010/01/15(Fri) 06:51:48
全22760件 [ ページ : << 1 ... 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 ... 1138 >> ]