[ 掲示板に戻る ]

過去ログ閲覧モード

質問数が多くてすみません。。。。。 / むささび3年
(1)sinθ+cosθ=23/17であるときsinθの値を二通り表せ。

(2)円に内接する四角形ABCDがありAB=3,BC=5,CD=6,DA=5のとき。

1,sin∠BAD

2,四角形ABCDの面積

(3)男5人、女7人の中から男女ペアを3組選ぶ選び方は。


この問題に関しては答えがわからないです・・・・・
解答、解説をお願いします!!

No.5512 - 2009/03/31(Tue) 00:00:56

Re: 質問数が多くてすみません。。。。。 / X
(1)
条件式を(A)とします。
(A)の両辺を2乗して左辺を展開し
(sinθ)^2+(cosθ)^2=1
を使うと
1+2sinθcosθ=(23/17)^2
∴sinθcosθ=120/289 (B)
(A)(B)から解と係数の関係によりsinθ,cosθの値は
tの2次方程式
t^2-23t/17+120/289=0 (C)
の二つの解になります。
(C)より
289t^2-391t+120=0
(17t-15)(17t-8)=0
∴t=15/17,8/17
よって求める値は15/17,8/17となります。

No.5515 - 2009/03/31(Tue) 00:17:24

Re: 質問数が多くてすみません。。。。。 / ヨッシー
(1)
合成公式より
 sinθ+cosθ=√2sin(θ+π/4)=23/17
 sin(θ+π/4)=23/17√2
これより
 cos(θ+π/4)=±7/17√2
加法定理より
 sinθ=sin{(θ+π/4)−π/4}
  =sin(θ+π/4)cos(π/4)−cos(θ+π/4)sin(π/4)
より求まります。

(2)
∠BAD=θ とすると ∠BCD=π−θ
△ABDにおける余弦定理より
 BD^2=AB^2+AD^2−2AB・ADcosθ
  =34−30cosθ
△CBDにおける余弦定理より
 BD^2=CB^2+CD^2−2CB・CDcos(π−θ)
  =61+60cosθ
両者を結んで
 34−30cosθ=61+60cosθ
 cosθ=−3/10
よって、
 sinθ=√91/10

 △ABD=(1/2)AB・ADsinθ
 △CBD=(1/2)CB・CDsinθ
合計すれば四角形ABCDになります。

(3)
男を3人選ぶのは 5C3=10(通り)
その3人を並べて、女を1人ずつあてがうのは
 7P3=210(通り)
以上より
 10×210=2100(通り)

No.5516 - 2009/03/31(Tue) 00:24:38

Re: 質問数が多くてすみません。。。。。 / むささび3年
ありがとうございます!!
No.5541 - 2009/04/02(Thu) 23:15:45
(No Subject) / みく
またまたすいません;

(4/3-1)x(6/1-2)という計算なんですが、私が出した(4/3-1)の答えは(4/2)になりました。答えが(4/1)なのですが、どうしても(4/2)にしかなりません。
よろしくおねがいします・・・。

No.5507 - 2009/03/30(Mon) 13:25:01

Re: / ヨッシー
4/3-1 は、3分の4 ひく 1 で、3分の1 つまり 1/3 になります。
4/(3-1) なら、4/2 ですが、これは 2 と約分されます。

一般に a分のb は b/a と書きます。

No.5508 - 2009/03/30(Mon) 13:33:29
(No Subject) / ゆう
(1)実数p、qを係数とする2次方程式x^2+px+q=0は2つの異なる実数解α,βをもつ。このときα+1、β+1が2次方程式x^2-3p^2x-2pq=0の解となるように、p,qの値を定めよ。

いつもすいません…
全くできなくて…
よろしくお願いします。

No.5505 - 2009/03/30(Mon) 00:27:09

Re: / hari
「解法1」
2次方程式x^2+px+q=0は2つの異なる実数解α,βを持つので解と係数の関係から
α + β = -p, αβ = q

α+1、β+1が2次方程式x^2-3p^2x-2pq=0の解となるということなので
α + β + 2 = 3p^2, (α + 1)(β + 1) = -2pq

以上から
3p^2 + p - 2 = 0, 2pq - p + q + 1 = 0・・・(☆)
なので (p, q) = (-1, 2), (2/3, -1/7)

「解法2」
x^2+px+q=0は実数解α,βを持ち、x^2-3p^2x-2pq=0の解はα+1、β+1がであるということは
y = x^2-3p^2x-2pqはy = x^2 + px + qをx軸方向へ+1平行移動したグラフということになります。

つまり(x - 1)^2 + p(x - 1) + q = 0とx^2-3p^2x-2pq=0は恒等的に等しいということなので
係数比較より(☆)が導けます。

No.5506 - 2009/03/30(Mon) 01:24:55

Re: (No Subject) / ゆう
なるほど!
分かりました!
ありがとうございました!

No.5513 - 2009/03/31(Tue) 00:09:24
初めてです。宜しくお願いします。 / はる
入学先の高校からの宿題の一つなのですが宜しくお願いします。
X^2-3X-5=0の二つの解をa.bとする時次の値をもとめよ。
(1)a^2-3a
(2)(a^2-3a)(b^2-3b+1)

考え方がわかりません。

No.5499 - 2009/03/29(Sun) 18:06:30

Re: 初めてです。宜しくお願いします。 / X
これはa,bの値を直接求める必要はありません。
a,bは2次方程式
x^2-3x-5=0
の解ですので
a^2-3a-5=0 (A)
b^2-3b-5=0 (B)
(A)(B)は
a^2-3a=5 (A)'
b^2-3b=5 (B)'
と変形できますので…。

No.5503 - 2009/03/30(Mon) 00:17:47

Re: 初めてです。宜しくお願いします。 / はる
ありがとうございました。難しく考えすぎていました。解き方のコツって色んな問題をたくさんやれば身についていくものなのでしょうか・・・。頑張ります。
No.5511 - 2009/03/30(Mon) 17:49:30
初めてです。宜しくお願いします。 / はるか
入学先の高校からの宿題の一つなのですが宜しくお願いします。
X^2-3X-5=0の二つの解をa.bとする時次の値をもとめよ。
(1)a^2-3a
(2)(a^2-3a)(b^2-3b+1)

考え方がわかりません。

No.5498 - 2009/03/29(Sun) 18:06:02

Re: 初めてです。宜しくお願いします。 / NISSK
x = a, b は x^2 - 3x - 5 = 0 の解なのでそれぞれ
  a^2 - 3a - 5 = 0 … (ア)
  b^2 - 3b - 5 = 0 … (イ)
を満たします.
(1) の a^2 - 3a は (ア)と似ていませんか?

No.5500 - 2009/03/29(Sun) 19:48:40

Re: 初めてです。宜しくお願いします。 / はる
ありがとうございました。難しく考えすぎていました。もっと頭を柔軟にしなくてはダメですね。
No.5510 - 2009/03/30(Mon) 17:45:36
(No Subject) / TDJ
自然数n=1,2,3...に対して、(2-√3)のn乗という形の数を
考える。これらの数はいずれも、それぞれ適当な自然数mが
存在して√m-√m-1という表示をもつことを示せ。
これは数学的帰納法を用いて証明するのでしょうか?
解き方を教えてください。

No.5496 - 2009/03/29(Sun) 15:31:49

Re: / のぼりん
こんばんは。

a、b を任意の正数とします。
   {√(a+1)−√a}{√(b+1)−√b}
    =〔√{(a+1)(b+1)}+√(ab)〕−〔√{(a+1)b}+√{a(b+1)}〕
です。
   〔√{(a+1)(b+1)}+√(ab)〕=2ab+a+b+1+2√{ab(a+1)(b+1)}
   〔√{(a+1)b}+√{a(b+1)}〕=2ab+a+b+2√{ab(a+1)(b+1)}
だから、
   c=2ab+a+b+2√{ab(a+1)(b+1)}
とおけば(c は整数とは限りません)、
   {√(a+1)−√a}{√(b+1)−√b}=√(c+1)−√c
です。

さて、n を正整数とするとき、{√(3+1)−√3} を展開した正の項は整数で、負の項は √3 の整数倍です。 従って、上の計算で c に当たる項は必ず整数だから、題意が成り立ちます。

No.5502 - 2009/03/29(Sun) 23:58:50
はじめまして。 / むささび3年
質問です!!
xy−2x+y=0を満たす整数x、yの組み合わせを4つ答えよ。
という問題の解法がわかりません・・・・。
やさしい方解答お願いします。

解法のヒントとしてxy−2x+y=0
       (x+1)(y−2)+2=0
       (x+1)(y−2)=−2「積が一定」

と書いてあるのですが、自分にはまったく理解できません・・・

No.5493 - 2009/03/29(Sun) 02:59:49

Re: はじめまして。 / hari
ab = -2
になるような整数(a, b)の組は何がありますか?ということです。

さらにa = x + 1, b = y - 2なのですから(x, y)が求まりますね。

No.5494 - 2009/03/29(Sun) 03:53:53

Re: はじめまして。 / むささび3年
ありがとうございます!!
No.5497 - 2009/03/29(Sun) 15:44:42
(No Subject) / ゆう
2次関数y=ax^2+bx+cのグラフをCとする。Cをx軸方向へ3、y軸方向へ5だけ平行移動したグラフをC'とする。C'を表す2次関数がy=ax^2+(2a+2)x-3a+1であるとき、

(1)b.cをaで表せ。
(2)C'とx軸の2交点の間の長さが√19であるとき、aの値を求めよ。

よろしくお願いします!

No.5491 - 2009/03/28(Sat) 23:03:15

Re: (No Subject) / hari
(1)
y = f(x)をx方向にp、y方向にq平行移動したグラフは
y - q = f(x - p)となります。


上記のことからC'は
y '= ax^2 + (-6a + b)x + 9a - 3b + c + 5
となります。
与えられたC'の式のxの係数と定数項を比較して
b = 8a + 2, c = 12a + 2
(または逆にC'をx方向に-3、y方向に-5移動させてCと係数比較でもいいです)


(2)
C'のx軸との交点のx座標をα、βとおくと
|α - β|^2 = (α + β)^2 - 4αβ
で、|α - β|=√19と解と係数の関係から
a = 2/3, -2となります。

No.5495 - 2009/03/29(Sun) 13:38:33

Re: (No Subject) / ゆう
分かりました!
ご丁寧にありがとうございました!

No.5504 - 2009/03/30(Mon) 00:19:20
数学には関係ありませんが / Jez-z
数学の質問ではないのですが、この1年この掲示板にはお世話になりました。(無事に志望校に合格できました)

特に、ヨッシーさん、rtzさん、らすかるさんには度々の質問にも丁寧に答えてもらい、数学の勉強がとても有意義なものでした。

受験が終わり、これからは自分の進路という??答"の唯一に決まらない問いに自ら問うていく所存にございます。

No.5487 - 2009/03/28(Sat) 20:25:11

Re: 数学には関係ありませんが / rtz
おめでとうございます。
これからも是非頑張っていってください。

No.5488 - 2009/03/28(Sat) 21:14:16

Re: 数学には関係ありませんが / らすかる
おめでとうございます。
今後のご健闘をお祈り致します。

No.5489 - 2009/03/28(Sat) 22:17:08

Re: 数学には関係ありませんが / ヨッシー
合格おめでとうございます。
Jez-z さんの質問は、自分の考えを示しつつ、
また、最後まで問い質すものが多く、回答する側も
気が引き締まる思いがしたものです。

これからも、頑張ってください。

No.5492 - 2009/03/29(Sun) 01:51:22
(No Subject) / ちょくtyくめい
http://www.uja.jp/modules/weblog/details.php?正四面体の中心角



これの
Hは四面体の重心だから,
3:1
になるってのがわかりません
おねがしますmm

No.5484 - 2009/03/28(Sat) 06:43:33

Re: / ヨッシー
まず、ページはこちらですね。
で、本文中の
>Gは△BCD の重心だから,
は誤りで、Hは△BCD の重心だから,が正しいです。
従って、
>Hは四面体の重心だから,
も誤りで、Gは四面体の重心だから,です。


図において、Kは、△ABCの重心であり、
 AK:KM=2:1
これと、MH:HD=1:2 および、メネラウスの定理より
 (AK/KM)(MD/DH)(HG/GA)=1
 (2/1)(3/2)(HG/GA)=1
 HG/GA=1/3
となります。

また、GHは、△BCDに垂直で、
四面体GBCDの体積は、△BCD×GH÷3です。
四面体ABCDの体積は、△BCD×AH÷3です。
四面体GBCDを4つ合わせると、四面体ABCDになるので、
 AH=GH×4
となります。

No.5486 - 2009/03/28(Sat) 08:36:09
高1・確率 / 匿名
n本のくじの中に当たりくじが3本含まれている。
2回続けてくじを引くとき、
少なくとも1本は当たりである確率は9/14である。
このとき、くじの本数nの値を求めよ。

2回ともはずれる確率は5/14だと思うのですが、
そのあとどうすればいいのかわかりません。
教えていただきたいです。

No.5482 - 2009/03/28(Sat) 00:04:15

Re: 高1・確率 / DANDY U
n本のくじをすべて区別すると2回続けて引く引き方の数は
nC2(通り)あります。
そのうち2回続けてハズレを引く引き方の数は、ハズレくじ(n-3)本から2本ひくので
(n-3)C2(通り)です。

その確率が 5/14 ですから、{(n-3)C2}/{nC2}=5/14 がいえます。
ここからnについての2次方程式が出来ますから、それを解けばどうでしょう。

No.5483 - 2009/03/28(Sat) 00:40:33
(No Subject) / みく
分かりやすい解説、ありがとうございました!
すごく助かりました。

No.5481 - 2009/03/27(Fri) 23:46:57
加減混合計算 / みく
小6です。
加減混合計算についてです。
(-12)+(-5)-(+6)-(-8)という計算です。減法を加法に直せというところもいまいちよく分かりません。かっこの無い式も出来ればよろしくお願いします。

No.5479 - 2009/03/27(Fri) 19:18:17

Re: 加減混合計算 / gaku
正の数と負の数は反対の意味を持ちます。
「+5kg減少」と「-5kg増加」とは同じ意味,「-300円の支出」と「+300円の収入」
は同じ意味です。

このように考えると
「-5をひく」と「+5をたす」 や 「+2をひく」と「-2をたす」は同じことなんです。
たとえば,
(-4)-(-2)=(-4)+(+2)   (+3)-(+5)=(+3)+(-5)
と引き算を足し算に変えることができます。このとき,前の方は何もさわっていないことに注意してください。
どうでしょう。引き算を足し算に変えるとき,後ろの符号を変えればよいことに気づきます。

みくさんの式では
(-12)+(-5)-(+6)-(-8)=(-12)+(-5)+(-6)+(+8)
と直すことができます。引き算の部分だけ足し算にすれば全部足し算です。

カッコのない式の場合
この式はさらに,-12-5-6+8というすっきりしたものに変えることができます。
ただ,そこのどの部分の質問なのかわかりませんでした。

No.5480 - 2009/03/27(Fri) 22:33:57
(No Subject) / ゆう
整式P(x)をx^2+x-6およびx^2-x-2で割ったときの余りがそれぞれ、4x+5、6x+1である。
P(x)をx^3+2x^2-5x-6で割った余りを求めよ。
答えがあわなくて…お願いします。

No.5473 - 2009/03/26(Thu) 20:45:40

Re: / X
題意から
P(x)=(x^2+x-6)A(x)+4x+5 (A)
P(x)=(x^2-x-2)B(x)+6x+1 (B)
(A(x),B(x)は整式)
の形になります。
(A)(B)はそれぞれ
P(x)=(x+3)(x-2)A(x)+4x+5 (A)'
P(x)=(x-2)(x+1)B(x)+6x+1 (B)'
となりますので
P(-3)=-7 (C)
P(2)=13 (D)
P(-1)=-5 (E)
一方、求める余りの次数は2以下ですので
求める余りをax^2+bx+cと置くと
P(x)=(x^3+2x^2-5x-6)C(x)+ax^2+bx+c (F)
(C(x)は整式)
の形になります。
これより
P(x)=(x+1)(x+3)(x-2)C(x)+ax^2+bx+c (F)'
∴(C)(D)(E)(F)'により
9a-3b+c=-7 (C)'
4a+2b+c=13 (D)'
a-b+c=-5 (E)'
(C)'(D)'(E)'を連立して解くと
(a,b,c)=(1,5,-1)
よって求める余りは
x^2+5x-1
です。

No.5474 - 2009/03/27(Fri) 00:43:33

Re: (No Subject) / ゆう
わかりました。
ありがとうございました!
またよろしくお願いします!

No.5485 - 2009/03/28(Sat) 07:27:27
積分 / マリオ
f(x)=(e^-x)cosxについて、
∫[nπ〜(n+1)π] |f(x)|dx
を求めよ。ただし、nは0並びに正の偶数とする。

私は以下のように考えました。
x-nπ=tと置くと
(与式)
=∫[0〜π] {e^-(t+nπ)} |cos(t+nπ)|dt
=∫[0〜π] {e^-(t+nπ)} |cost|dt
=∫[0〜π/2] {e^-(t+nπ)}costdt +∫[π/2〜π] {e^-(t+nπ)}(-cost)dt
=・・・・・

としました。

まず
cos(t+nπ)=cost
は成立するのでしょうか。
また、nが偶数という条件はどういうことなのでしょうか。

cosがsinの問題ならやったことがあるのですが・・・

No.5470 - 2009/03/26(Thu) 00:22:34

Re: 積分 / ヨッシー
良いと思います。
また、cos(t+nπ)=cost は
 cos(t+nπ)=cos(t+2mπ)=cost
より、成立します。

nが偶数ということは、積分範囲が
 0〜π, 2π〜3π, 4π〜5π
のように、角度でいうと、nがいくつでも同じ角度で
積分していることになります。
ですから、cosxにとっては、前半の π/2 が正で、
後半のπ/2 が負になります。これは、
 cos(t+nπ)=cost
が使えることと、同じです。
前半が正、後半が負ということを知っていれば、
x-nπ=t と置かなくても、
 ∫[nπ〜(n+1)π] |f(x)|dx
 =∫[nπ〜(n+1/2)π]f(x)dx−∫[(n+1/2)π〜(n+1)π]f(x)dx
として解けます。

No.5471 - 2009/03/26(Thu) 04:07:28

Re: 積分 / マリオ
つまり、私のように置換をしたらnが偶数という条件は不要という意味ですか。
No.5472 - 2009/03/26(Thu) 18:36:21

Re: 積分 / ヨッシー
そうではありません。
nが偶数という条件を外すと、cos(t+nπ)=cost は成立しません。

置換をするかしないかの問題だけです。
マリオさんは、置換をして、cost を作って、
0〜π/2 と π/2〜π に分けることを思いつかれたと思いますが、
置換しなくても、分けることは出来ますよ、程度の意味です。

No.5475 - 2009/03/27(Fri) 09:29:25

Re: 積分 / マリオ
nが奇数ならば
|cos(t+nπ)|=|cost|は成立しないのですか?

No.5476 - 2009/03/27(Fri) 18:10:13

Re: 積分 / ヨッシー
それは、成立しますが、絶対値が付いたままでは、積分できませんね。
nが奇数だと、前半が負、後半が正になります。
nが奇数か偶数か、決まっていない場合は、場合分けをする必要があります。

No.5477 - 2009/03/27(Fri) 18:48:59

Re: 積分 / マリオ
では私の解答においてnが偶数という条件はどこで使われているのですか。
No.5543 - 2009/04/03(Fri) 02:14:49

Re: 積分 / ヨッシー
すみません。
マリオさんの方法では、nが奇数、偶数関係ありませんね。
No.5477 でいう、場合分けも必要ありません。

で、当初の
>また、nが偶数という条件はどういうことなのでしょうか。
は、この方法なら、確かに感じるところでしょうが、
想定している解法は、私の書いたような方法だと思われます。

失礼しました。

No.5544 - 2009/04/03(Fri) 06:38:01

Re: 積分 / マリオ
やっと解決しました!!

解説ありがとうございました。

No.5548 - 2009/04/03(Fri) 22:57:37
(No Subject) / たけし
(1)ある正の整数を6で割れば1余り、7で割れば2余り、8で割れば3余る。最も小さいある整数を求めよ。
(2)2,3,4,5,6,7,8,9のどれで割っても1余る4けたの整数を全て求めよ。

modを使わずにお願いします。
よろしくお願いします。

No.5468 - 2009/03/25(Wed) 17:39:47

Re: / らすかる
(1)
その整数に5を足すと6でも7でも8でも割り切れますから、
答えは6と7と8の最小公倍数168から5を引いた163です。

(2)
1引いた数は2,3,4,5,6,7,8,9の公倍数つまり2520の倍数ですから、
答えは2521,5041,7561です。

No.5469 - 2009/03/25(Wed) 18:12:24
(No Subject) / gon
集合Aを50以上400以下の自然数全体の集合とするとき、10で割ると1余るようなAの要素全体の和は(x)となり、1を加えると自然数の平方となるようなAの要素全体の和は(y)となる。
xとyを答えよ。

解き方が分かりません。
できるだけ詳しく教えていただけないでしょうか?
お願いします。

No.5458 - 2009/03/22(Sun) 21:22:13

Re: / gaku
Σは習っていますか。もし習っているなら
xの方は10k+1でやれば求めることができます。
yの方はk^2-1でやればいいと思います。

No.5460 - 2009/03/22(Sun) 21:56:05

Re: / rtz
葦で解決されたのではないのですか?
No.5461 - 2009/03/22(Sun) 22:22:22

Re: / gon
50<=10n+1<=400
5<=n<=39

50<=n^2-1<=400
8<=n<=20

で、x , y の答えは何になるのですか?

No.5462 - 2009/03/22(Sun) 23:03:43

Re: / ヨッシー
どこまでわかっておられるかわからないと、答えるのも難しいですが。
5≦n≦39 ですから、n=5,6,7,・・・38,39 ですね?
n=5 とは、何を表しますか?
n=4 はなぜダメですか?
xを、手計算で計算するとすると、どういう式になりますか?

No.5466 - 2009/03/23(Mon) 16:18:23
証明 / 高校一年
毎回とても分かりやすい回答・解説ありがとうございます。
今回は・・・

 |a|-|b|≦|a-b|の証明の解き方が分からないので教えて下さい。

 私は右辺引く左辺で
 |a-b|2乗-(|a|-|b|)2乗で考えて、
 =2(|ab|-ab)≧0
 よって|a|-|b|≦|a-b|だとおもったんですが、

 回答を見ると・・・
 |a|=|b+(a-b)|≦|b|+|a-b|
 ∴|a|-|b|≦|a-b|
 等号成立はb(a-b)≧0
 と書いてありました。
 私は|a|=…    
 の式から意味が良く分かりません。
 また等号成立の式はどうやって出てきたのでしょうか?
 教えて下さい。
 お願いします。

No.5457 - 2009/03/22(Sun) 19:26:16

Re: 証明 / gaku
一般に、
-5<2ですが(-5)^2>2^2となるので、
a^2≧b^2ならばa≧bという方法は、a≧0、b≧0という条件が必要です。
ここで、|a|-|b|は負の可能性があるので、この方法は説明になっていないということになります。
ところが、
|a+b|≦|a|+|b|なら成り立つのでそれを利用しているのです。
また、等号成立はab≧0のときです。
このばあい、aにあたるのがb、bにあたるのがa-bです。

No.5459 - 2009/03/22(Sun) 21:53:08

Re: 証明 / 高校一年

解説ありがとうございます!
この場合、解くと
 |a|≦|b+(a-b)|
 ={|b+(a-b)|}2乗−|a|2乗
 =2b2乗−2ab
 =ab-b2乗
 =b(a-b)でこの後はどうしたらいいんですか?
 また、このとき方であっていますか?
 教えて下さい☆
 

No.5463 - 2009/03/23(Mon) 11:05:58

Re: 証明 / gaku
書き方に誤りがあります。
|b+(a+b)|={|b+(a-b)|}^2-|a|^2ではありません。
|a|=|b+(a-b)|
ここで、|x+y|≦|x|+|y|になることを利用してます。ただし、この等号成立はxy≧0です。
よって、
|a|=|b+(a-b)|≦|b|+|a-b|
|b|を移項して、
|a|-|b|≦|a-b|を導いてます。
等号成立は、xy≧0のときと同様に、b(a-b)≧0です。

No.5465 - 2009/03/23(Mon) 15:43:28

Re: 証明 / 高校一年
ありがとうございます!!
 とても分かりやすくて助かりました☆
 

No.5467 - 2009/03/23(Mon) 16:45:24
(No Subject) / 桜
小5です。教えてください。

めぐみさんとのりこさんは、おはじきを2人合わせて156個持っています。
めぐみさんからのりこさんに、めぐみさんのおはじきの5/7をわたし、その次にのりこさんからめぐみさんに、のりこさんのおはじきの3/4をわたします。
これを1回と数えます。
このことを何回くり返しても2人の持っている個数は変わりませんでした。最初にめぐみさんが持っていたおはじきの数は何個ですか。
 
よろしくお願いします。

No.5455 - 2009/03/22(Sun) 18:22:02

Re: / らすかる
めぐみさんがわたさなかったおはじきとわたしたおはじきの比は 2:5
のりこさんがわたしたおはじきとわたさなかったおはじきの比は 3:1
2:5 = 6:15、3:1 = 15:5 だから、めぐみさんがわたさなかったおはじきと
わたしたおはじきとのりこさんが最初に持っていたおはじきの比は 6:15:5
よってめぐみさんが最初に持っていたおはじきは
全体の (6+15)/(6+15+5)=21/26=126/156 なので、126個。

No.5456 - 2009/03/22(Sun) 19:00:08

Re: / 桜
どうもありがとうございました。
No.5464 - 2009/03/23(Mon) 14:55:47
微分法の応用 いろいろな応用 / ゆうすけ
次の関数の第2次導関数を求めよ。また、x=0における第2次微分係数を求めよ。
y=Tan^-1(x/3)

y'=1/(1+1/3) ...? 何問かあるうちの この問題だけ、出来ませんでした。お願いします。

No.5453 - 2009/03/20(Fri) 22:41:18

Re: 微分法の応用 いろいろな応用 / X
問題の意味は
y=tan^-1(x/3)
のときのy"を求めよ。又x=0のときのy"の値を求めよ
ということです。

>>y'=1/(1+1/3) ...? 
y'=3/(x^2+9)
となりますので
y"=(y')'=…

No.5454 - 2009/03/22(Sun) 09:15:27
全22336件 [ ページ : << 1 ... 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 ... 1117 >> ]