[ 掲示板に戻る ]

過去ログ閲覧モード

(No Subject) / ポン
ある人が30日目までお米を貰えるとしたら何石貰えることになるか?但し、1合=1000粒として計算しなさい。

分かりそうで、全く分かりません。
お願いします。

No.962 - 2008/06/03(Tue) 17:45:45

(No Subject) / ヨッシー
1日1粒なら、30日で30粒です。
30粒=0.03合=0.003升=0.0003斗=0.00003石
です。

No.963 - 2008/06/03(Tue) 17:51:18

Re: / ポン
なるほど!
ありがとうございます!

No.964 - 2008/06/03(Tue) 18:47:32

Re: / DANDY U
問題の意味が分からないですね。
30日目までどのような貰い方をするのでしょうか。
1日1粒ならヨッシーさんの書かれたとおりですが・・・
条件が抜けているのでは?

No.965 - 2008/06/03(Tue) 18:50:03

Re: / rtz
1日目1粒、2日目2粒、3日目4粒とか
そういうことなんだろうと思いますが…。
(百姓と殿様の話でそんなのがあった気がします)

No.966 - 2008/06/03(Tue) 19:56:26
不等式の文章題 / kry
?@「ある美術館の入場料金は大人200円、子供120円である。団体は20名以上で2割引である。ただし、20名未満でも団体料金でも入場できるが、その場合は20名と見なされる。また、団体で入場するときは、子供も大人の料金とする。
(1)20名未満の大人が団体料金で入場するならば、何名以上のとき有利か。
(2)大人、子供合わせて26名が団体料金で入場するならば、大人が何名以上のとき有利か。」

?A「みかんを11個ずつ配ると4個余る。13個ずつ配ると最後の1人が7個より多いが不足するという。人数とみかんの個数を求めよ」
なかなか不等式が作れません。
よろしくお願いします。

No.954 - 2008/06/02(Mon) 21:54:05

Re: 不等式の文章題 / にょろ
団体料金は20名の時
20*200*0.8=3200円です。
一般ではいると一人200円なので
3200/200=16人以上でいいですかね
(キレイに割り切れちゃったので16人を入れるか入れないかは微妙ですが…)

以下の連立不等式でいけます。
x:こどもの人数
y:大人の人数

人数の式
x+y=26

金額の式
120x+200y>200*26
一応注釈入れておくと
左辺:団体でない場合
右辺:団体の場合
(有利というのは団体料金より個人料金の合計が大きいでいいですよね?)


ヒントのみ出すのでそれで
x:蜜柑の個数
y:人数

これで
11個ずつ配ると4個余る

13個ずつ配ると最後の1人が7個より多いが不足する

13個ずつ配るとy-1人に行き渡り7個以上余る

でどうでしょう。
もしダメなら、小学校直伝の数直線で考えてみては?

この問題文の日本語も不親切だな〜と

No.956 - 2008/06/02(Mon) 22:06:36

Re: 不等式の文章題 / kry
確かに不親切な日本語ですね。これを参考に解いてみます。
解説していただきありがとうございました。

No.960 - 2008/06/02(Mon) 22:51:01
単調増加・減少 / れん
例えばf(x)という関数があって、f'(x)≧0だったらf(x)は単調増加といえるのでしょうか。
f'(x)>0でf(x)が単調増加ということは分かるのですが…。
ちょっとした疑問なのですが、どなたか教えて下さい。

No.953 - 2008/06/02(Mon) 21:08:23

Re: 単調増加・減少 / にょろ
えーと

普通は
f(x)=6
と言う関数は増加ではないですよね?
f'(x)=0ですけど…
つまりある一点(一瞬)でf'(x)=0ならば単調増加といえますが、
ずっとf'(x)=0は単調増加にはなりません。

f(x)=x^3はf'(0)=0ですが単調増加です。

結構適当ですけどこれで良いですか?

No.955 - 2008/06/02(Mon) 21:55:22

Re: 単調増加・減少 / れん
なるほど…。分かったような気がします。
解答ありがとうございました!

No.958 - 2008/06/02(Mon) 22:19:20
場合の数です / いさみ
1〜9までの番号のついた9枚のカードから3枚を取り出して3桁の整数を作る。
1)4の倍数になる整数はいくつ出来るか
2)3の倍数になる整数はいくつ出来るか

という問題なのですが、
1)は下2桁が4の倍数のものを考えて数え上げる…という方法が一番早いのでしょうか?
2)は書き出す以外に方法は無いでしょうか?
また、それ以外の倍数を聞かれた時にはどのようなやり方をすればいいのでしょうか?
一つずつ書き出して数えると、どんなに真剣にやっていても
数え間違いが多くて本当に情けなくなります。どうか良いアドバイスと解法を教えていただけないでしょうか。宜しくお願いいたします。

No.948 - 2008/06/02(Mon) 05:07:27

Re: 場合の数です / 七
1)
0がありませんから,数え上げた方がはやいでしょう。
12,16,24,28,32,…
とここまで考えると10,20,…,90台で2個ずつありそうだということに気づくはずです。
2×9=18,待てよ… 44,88は出来ないな。と考えて
18−2=16
この16通りのそれぞれについて百の位は残りの7通りずつあるので
16×7 個

2)
3の倍数は各位の数字の和が3の倍数になります。
3で割って1余るものが1,4,7の3個
3で割って2余るものが2,5,8の3個
3で割って0余るもの(割り切れるもの)が3,6,9の3個
各位の数字の和が3の倍数になる組合せは,3で割ったときの余りだけでいうと
(1,1,1),(2,2,2),(0,0,0)と(1,2,0)の場合だけです。
(1,1,1),(2,2,2),(0,0,0)はそれぞれ1組ずつあり,
3×3! 個
(1,2,0) は組合せは3×3×3通り
それぞれが3!通りずつですから
3×3×3×3! 個
あわせて 180 個
だと思います。

No.949 - 2008/06/02(Mon) 08:30:57

Re: 場合の数です / にょろ
一応補足として整数倍の見分け方をいくつか

2の倍数→一桁目が二の倍数
3の倍数→↑参照

4の倍数→下二桁が4の倍数
例)128は下二桁の28が4の倍数なので4の倍数です。

5の倍数→下一桁が0,5
6の倍数→二の倍数且つ3の倍数

8→下三桁が8の倍数
9→3の倍数と同じ方法で和が9の倍数


4,8の証明は簡単なのでやってみては?
7は面倒くさいので割愛

No.959 - 2008/06/02(Mon) 22:20:09

Re: 場合の数です / ヨッシー
補足の補足ですが、私のページに、「割り切り判定法」
あります。少し見にくいですが。

No.961 - 2008/06/03(Tue) 17:28:53
2次関数 / 礼花 高2
2次関数f(x)=2x^2-ax+a-1(aは定数)がある。
(1)f(x)の最小値をaを用いて表せ。
(2)x≧0において、つねにf(x)≧-2であるようなaの値の範囲を求めよ。
(3)Oを原点とする座標平面上に、点A(2,0)をとる。放物線y=f(x)が線分OA(両端を含む)と1点のみを共有するようなaの値を求めよ。

連続で、しかも3問もあって、本当に申し訳ありません。
(1)は一般形には直せたのですが、最小値の出し方が分からず、(2)(3)は全く分かりません…。自分でいろいろ考えてみたのですが、もう限界なので、すみませんが、よろしくお願いします。

No.947 - 2008/06/02(Mon) 04:13:05

Re: 2次関数 / ヨッシー
(1)
>一般形には直せた
というのは、f(x)=2(x-a/4)2-a2/8+a-1 の形に
出来たということでしょうか?ならば、
x=a/4 のときに、f(x) の最小値 -a2/8+a-1 というのは即座に分かります。

(2)
頂点の座標(a/4,-a2/8+a-1)が、x≧0 の範囲にあるなら、
つまり、a≧0 のとき、
 -a2/8+a-1≧-2
頂点の座標(a/4,-a2/8+a-1)が、x<0 の範囲にあるなら、
つまり、a<0 のとき、
 f(0)≧-2
とします。

(3)f(0)とf(2) が異符号またはいずれかが0のとき、条件を満たします。

以上、取り急ぎ。

No.951 - 2008/06/02(Mon) 08:51:10

Re: 2次関数 / ヨッシー
(3) は、あと、0≦x≦2 の範囲で、重根を持つというのも
ありますね。つまり、判別式が0で、頂点のx座標が
 0≦x≦2
の範囲にあるときです。これを考慮しておけば、上の記事の
「異符号またはいずれかが0」は「異符号」だけに出来ます。

No.952 - 2008/06/02(Mon) 11:00:02

Re: 2次関数 / 礼花 高2
ヨッシーさま、ありがとうございました!

(2)頂点の座標(a/4,-a2/8+a-1)が、x≧0 の範囲にあるなら、
つまり、a≧0 のとき、 -a2/8+a-1≧-2
頂点の座標(a/4,-a2/8+a-1)が、x<0 の範囲にあるなら、
つまり、a<0 のとき、 f(0)≧-2 とします。

とありますが、問いに対し、なぜこうなるのか分かりません。すみませんが、もう一度解説して頂けないでしょうか?よろしくお願いします。

No.969 - 2008/06/04(Wed) 00:07:44

Re: 2次関数 / ヨッシー
まず、x≧0 において、最小値が-2以上であればいいということを確認しておきます。

図のように、頂点がx≧0 の位置にあるときは、頂点が最小なので、
 頂点のy座標≧-2
です。頂点がx<0の位置にあるときは、x=0 のときに
f(x) は最小になるので、f(0)≧-2 となります。

No.971 - 2008/06/04(Wed) 00:16:23
(No Subject) / 礼花 高2
こんばんは。いつもお世話になります。

xの不等式x^2-x-12<0…(1)、ax<a^2+2a…(2)がある。ただし、aは0でない定数とする。
3.不等式(2)を解け。また、不等式(1),(2)を同時に満たす整数xがちょうど2個であるようなaの値の範囲を求めよ。

この問題が分かりません。すみませんが、ご教授のほど、よろしくお願いします。

No.946 - 2008/06/02(Mon) 04:12:43

(No Subject) / ヨッシー
x^2-x-12<0…(1) は、
(x-4)(x+3)<0 より、-3<x<4 であり、この範囲の整数は、
 -2,-1,0,1,2,3
です。
ax<a^2+2a…(2) において、
a>0 のとき、x<a+2 より、-1<a+2≦0 であれば、
(1) との共通の整数は -2,-1 の2つになりますが、
a>0の範囲では、条件を満たすaはありません。
a<0 のとき、x>a+2 より 1≦a+2<2 であれば、
(1) との共通の整数は -2,-1 の2つになります。
このとき、-1≦a<0 であり、a<0 と合わせて、
 -1≦a<0
が答えとなります。

No.950 - 2008/06/02(Mon) 08:42:37

Re: / 礼花 高2
ヨッシーさま、2問続けて丁寧に解説してくださってありがとうございました!

数?Tの範囲なのにもうすっかり忘れてしまっていました…。
復習もきちんとしていきたいと思います!!
本当にありがとうございました。

No.968 - 2008/06/04(Wed) 00:05:11
(No Subject) / あ〜すけ
実数の連続公理のうち、有界なだけの数列、単調なだけの数列は収束しないことを例を挙げて説明せよ。
・・・全然分かりません。時間があったらお願いします。

No.937 - 2008/06/01(Sun) 23:40:34

Re: / にょろ
説明を証明ととらないなら話は簡単
有界なだけの数列はAn=(-1)^n等は振動するので収束しません。
(つまり振動する可能性がある)
特に
X(n+1)=aXn(1-Xn)
(3.6<a<4)とかはね…

つまり振動するかもしれない

単調な場合
An=n何かは発散しますね。
つまり発散するかもしれない

でどうでしょう?

No.940 - 2008/06/01(Sun) 23:57:12

Re: / にょろ
収束しないことの部分を忘れていました。

有界なだけで単調でないなら
減ったり増えたりするんだから振動する

単調なだけで有界でないなら
際限なく増えるか減るかなんだから発散する

証明せよは勘弁

No.941 - 2008/06/02(Mon) 00:03:15

Re: / あ〜すけ
答えありがとうございました!!
No.943 - 2008/06/02(Mon) 00:08:52

Re: / にょろ
あ、一応超適当解答なので一部嘘ありますよ。たぶん
No.945 - 2008/06/02(Mon) 00:14:34
(No Subject) / m 高校2
直線y=2xに関して、点Q(a,b)と対称な点をP(x,y)とする。
?@a、bをそれぞれx、yを用いて表せ。
?A直線2xに関して、直線2x+3y=6と対称な直線の方程式を求めよ。

?@番は解けたのですが、?A番の解き方が分かりません。
教えてください!宜しくお願いします!

No.933 - 2008/06/01(Sun) 23:22:32

(No Subject) / ヨッシー
(2) は、直線y=2x の間違いですよね?

(1) では、a=・・・、b=・・・ という式になると思いますが、
点Q(a,b)が、直線2x+3y=6 上にあると考えると、
a,bは、2a+3b=6を満たします。
これに、(1)で求めた式を代入すると、x、yの式になります。
これが答えです。

No.936 - 2008/06/01(Sun) 23:31:57
不等式の文章題 / kry
「午後3時にS地点を出発したA君は、途中で5分休み、午後6時50分にT地点に到着した。B君は午後3時40分にS地点を出発し、途中休まずに午後6時40分にT地点に到着した。B君がA君を追い越したのは、A君が休んでいる間であった。
A君、B君の速さは一定であるとして、B君がA君を追い越した時刻は、午後何時何分から何時何分までの間か。」
ダイヤグラムを書こうとしたのですが、うまくいきませんでした。よろしくお願いします

No.931 - 2008/06/01(Sun) 23:14:35

Re: 不等式の文章題 / ヨッシー
ダイヤグラムで解くなら、図のようになります。
3:00に出発して6:45に着くグラフと、3:05に出発して
6:50 につくグラフがあり、どこかで、左から右に飛び移る(休憩する)
グラフが、A君のたどるグラフです。
これと、3:40に出発し、6:40に着くグラフとの交点が、
飛び移るタイミングと重なるところは、図のPの時刻とQの時刻の間になります。

No.935 - 2008/06/01(Sun) 23:27:52

Re: 不等式の文章題 / kry
ダイヤグラムで解説していただきありがとうございました。
改めて自分で書いて確認します。

No.942 - 2008/06/02(Mon) 00:07:57
ド・モアブルの定理 / ナオキ
ド・モアブルの定理を使ってz3=1の解を求めなさい。
すみませんが、これ教えて下さい。

No.930 - 2008/06/01(Sun) 22:51:18

Re: ド・モアブルの定理 / にょろ
え?
3z=1?
z=1/3に決まってるじゃないですかやだもぅ

え?違う?

まず言いたいのは、
zの三乗を表したい時はz^3と書きましょう。

z=(cosθ+isinθ)とすると
(左辺)=(cosθ+isinθ)^3=cos3θ+isin3θ=1

cos3θ=1
sin3θ=0

を解けば終わりです。
(これくらいは自分でやりませふ)
これで良いと思いますよ。(タブン)

No.932 - 2008/06/01(Sun) 23:19:33

Re: ド・モアブルの定理 / ナオキ
初めての質問でして・・・
分かりました。ありがとうございます。

No.934 - 2008/06/01(Sun) 23:27:35
確率 / すーさん
白球5個,赤球3個,黒球2個がある。次のような方法は何通りありますか。
1 10個の球を6人に分ける方法(1個ももらわない人もOK)
2 10個の球を2組に分ける方法

確率というより,組合せの問題ですが,ぜひ簡単な例をあげて教えてください。

No.926 - 2008/06/01(Sun) 18:17:38

Re: 確率 / 七
白球5個
だけなら分かりますか?

No.927 - 2008/06/01(Sun) 18:24:16

Re: 確率 / すーさん
それならできます。
回答ありがとうございます☆

No.928 - 2008/06/01(Sun) 18:32:01

蛇足かも知れませんが / 七
全部分かったのかどうかよく分からないので,
白球5個だけについて,赤球3個だけについて,黒球2個だけについてそれぞれ考えて,
それらを組み合わせて考えれば出来ると思います。

No.929 - 2008/06/01(Sun) 20:13:46
因数分解(その2) / FF456
次の式を因数分解せよ。
(1)(x+1)^3-y^3
(2)xy^2+y+z-xz^2
(3)3x^2-5xy-2y^2+x+5y-2
(4)x^2y^2-x^2-y^2+4xy+1
(5)(x^2-3x+1)(x^2-3x-3)-5

これらの計算過程を教えてください!

No.923 - 2008/06/01(Sun) 08:06:08

Re: 因数分解(その2) / ヨッシー
(1)X=x+1 とおくと、
 (与式)=X^3-y^3
 公式 a^3−b^3=(a-b)(a^2+ab+b^2) を使う
(2)(与式)=x(y^2-z^2)+(y+z)=x(y-z)(y+z)+(y+z)
 (y+z) でくくる。
(3)(与式)=3x^2+(1-5y)x-2y^2+5y-2
 =3x^2+(1-5y)x+(1-2y)(y-2)
 =3x^2+{3(1-2y)+(y-2)}+(1-2y)(y-2)
(4)(与式)=(y^2-1)x^2+4xy+(1-y^2)
 =(y-1)(y+1)x^2+4xy-(y-1)(y+1)
 ={(y-1)x+(y+1)}{(y+1)x-(y-1)}
(5)X=x^2-3x とおくと
 (与式)=(X+1)(X-3)-5=X^2-2X-8

No.924 - 2008/06/01(Sun) 08:51:17

Re: 因数分解(その2) / DANDY U
FF456さん、下のスレッドへの回答は読まれたのでしょうか?
こういう掲示板は、解答作成マシーンではないと思いますが・・

No.925 - 2008/06/01(Sun) 09:10:21
因数分解 / FF456
次の式を因数分解せよ。
(1)24a^4b+81ab^4
(2)c^2(a-b)+9(b-a)
(3)(x^2-x+1)(x^2-x+2)-12
(4)a^3+a^2b-ac^2-bc^2
(5)2x^2-xy-y^2+5x+y+2
(6)a^2(b-1)+b^2(1-a)+(a-b)

これらの計算過程を教えてください!

No.921 - 2008/05/31(Sat) 17:27:49

Re: 因数分解 / にょろ
取りあえず
ヒントを出します。

基本レベルの問題なのでできればこれで分かってください

(1)3ab((2a)^3+(3a)^3)
(2)c^2(a-b)-3^2(a-b)
(3)取りあえず展開が常套手段
(4)aの3-1次項,2-0次項を纏めてみる
(5)まずxoryで括ってみる
(6)(5)同様どちらかで括る

まずやってみる
出来なければまたどうぞ

No.922 - 2008/05/31(Sat) 18:51:02
[問]fが[0,1]で積分可能ならlim[n→∞]n^2∫[0..1/n^3]f(x)=0である事を示せ / yuuka
[問]fが[0,1]で積分可能ならlim[n→∞]n^2∫[0..1/n^3]f(x)=0である事を示せ。
[証]
積分の定義(?)からf(x)は[0,1]で有界である。
従って、∃m,M∈R;m≦f(x)≦M(for ∀x∈[0,1])と言え、
m(1/n^3-0)≦∫[0..1/n^3]f(x)≦M(1/n^3-0)
m/n^3≦∫[0..1/n^3]f(x)≦M/n^3
よって
n^2m/n^3≦n^2∫[0..1/n^3]f(x)≦n^2M/n^3
m/n≦n^2∫[0..1/n^3]f(x)≦M/n
よって
lim[n→∞]m/n≦lim[n→∞]n^2∫[0..1/n^3]f(x)≦lim[n→∞]M/n
lim[n→∞]m/n=lim[n→∞]M/n=0より
lim[n→∞]n^2∫[0..1/n^3]f(x)=0

となったのですがこれで正しいでしょうか?

No.919 - 2008/05/31(Sat) 07:45:11
図形 / ag
三角形OABをOA=OB=2、角AOB=θとする。
ABの中点をMとして、OAを直径とする半円とOBを直径とする半円を、いずれもMを通るように描く。
半円の周と内部からなる図形を半円板ということにする。この二つの半円板の
共通部分の面積をSとする。

0<θ<π/2のときSをθを用いて表せ

お願いします

No.917 - 2008/05/30(Fri) 20:20:46

Re: 図形 / 七
図を参考に求められませんか?
No.920 - 2008/05/31(Sat) 08:08:40
軌跡 / √
よろしくお願い致します。

地球は太陽の周りを、自転しながら公転していますが、
日本の位置を、点Nとすると、
点Nの描く軌跡は、「花まる」の形ですか?

No.908 - 2008/05/30(Fri) 12:50:51

Re: 軌跡 / rtz
地球は太陽の周りを1年≒360日で1周しますから、
太陽から見れば1日で約1度移動します。

太陽と地球の距離をおよそ15000万kmとすると、
地球が1日で移動する距離は15000万×2×π÷360≒260万km
対して、地球の直径は約1.3万kmしかありません。

つまり、花丸のような形にはならず、
公転軌道の内外を波打つような形になります。
(地球200個分の距離を移動してしまうので)

No.909 - 2008/05/30(Fri) 13:12:18

Re: 軌跡 / ヨッシー
「花まる」にはなりません。
2π×(日本の位置の地軸からの半径)が、(1日の公転距離)
より大きければ、ループが出来ますが、
前者約3.3万km、後者約257万km と公転の方がずっと速いので、
極点の軌道より多少揺れる程度の軌跡になるでしょう。

No.910 - 2008/05/30(Fri) 13:33:35

Re: 軌跡 / √
rtzさん
早速の、お返事有り難うございます。

> 公転軌道の内外を波打つような形になります。

私は、まだ「波打つような形」がイメージ出来ないでいるのですが、非常に細かいsinカーブのような形が輪になっているといった感じでしょうか?

公転軌道は地球に比べたら、はるかに大きく、
曲率が、とても小さく直線に近くなるので、どうしても、「サイクロイド」をイメージしてしまいます。

とても細かいサイクロイドが、輪になっているよーにしか
イメージ出来ないのですが、
もう少し考えてみます。

No.911 - 2008/05/30(Fri) 13:52:01

Re: 軌跡 / √
ヨッシーさん
有り難うございます。

> 2π×(日本の位置の地軸からの半径)が、(1日の公転距離)
> より大きければ、ループが出来ますが、


地球の円周(球周?)が1日の公転距離(転がった分だけ)と、考えたのが、そもそもの間違えだったのでしょうか?

> 前者約3.3万km、後者約257万km と公転の方がずっと速いので、

地球が、自転しているから、自転した分だけ公転するのではなく、
自転と公転は無関係で動いていると考えれば良いのですか?
初歩的な質問で、すみません。

No.912 - 2008/05/30(Fri) 14:18:28

Re: 軌跡 / ヨッシー
そうですね。
地球は別に何かに沿って転がっているわけではなく、
公転速度は、自転による転がり速度よりずっと速いのです。


図は、動円の半径に対して、0.5倍,1.0倍,1.5倍 の点の
軌跡です。
1.0 倍の場合をサイクロイド、他をトロコイドといいます。
1.0倍を超えるときに初めてループが出来ます。

中心あたりで、直線のようになっているのが、自転公転の場合の動きです。
ただし、誤解しないでいただきたいのは、図の円は、地球ではなく、
公転速度に見合う大きさの円を想定したものです。

No.913 - 2008/05/30(Fri) 14:44:50

有り難うございました / √
ヨッシーさん
有り難うございました。

やっと、誤解が解けました。

恥ずかしながら、今まで、
地球が、東に向かって、転がった分だけ、地球が移動(公転)する。
だから、
地球は365回、転がると、太陽の周りを1周するので、公転軌道の円周の長さは、
地球の円周(球周)の365倍の長さだと思ってました。

No.914 - 2008/05/30(Fri) 15:20:00
平方根です / みき
中学校3年生の問題です。

√4=√(2^2)=2
になるのですが
√4=√(-2^2)=-2
という解釈もできてしまいます!どうして。-2は間違いだと説明できるのですか??

No.901 - 2008/05/30(Fri) 06:03:51

Re: 平方根です / ヨッシー
√4 は、
「2乗して4になる数のうち負でない方」
という意味です。「負でない」というのは、0のことを考慮してのことで、
大抵は「正の方」と考えて良いです。

ちなみに、
4の平方根は?→2と−2
平方根4は?→2
で、√4 は、後者の方です。

No.902 - 2008/05/30(Fri) 06:18:40

Re: 平方根です / みき
ありがとうございます!!もう少し悩んでみます
No.904 - 2008/05/30(Fri) 06:47:25
重複組み合わせの問題です。 / いさみ
「1,2,3の3つの数字から重複をゆるして4個の数字をとる組み合わせの総数を求めなさい。」という問題なのですが、解答は「1111、2222、3333、1112、1113、2221、2223、3331、3332、1122、1133、2233、1123、2213、3312」の15通り
 何故、1121や1211、2111などは含まれないのでしょうか。
まったく解りません、宜しくお願いいたします。

No.897 - 2008/05/30(Fri) 01:07:50

Re: 重複組み合わせの問題です。 / にょろ
確かに
4桁の正数を作るという問題ならばそれであっていますが、
今回は選ぶだけなので2111,1211,1121,1112は同じ物です。
今回は、数もそんなになさそうなので取り尽くし法でやってみましょう。

1が4つある場合
1111の一通り

1が3つある場合
1112
1113
の2通り

1が2つある場合
1122
1123
1133
の3通り

1が一つだけの場合
1222
1223
1233
1333
の4通り

1が一つもない場合

2222
2223
2233
2333
3333
の5通り

よって1+2+3+4+5=15通りです。

このタイプの問題は重複組み合わせと呼ばれています

No.898 - 2008/05/30(Fri) 01:21:47

Re: 重複組み合わせの問題です。 / いさみ
納得いたしました。どうもありがとうございました!!
No.899 - 2008/05/30(Fri) 01:55:56
初めて書き込みさせていただきます。 / 白梅
高校3年生の数列の極限問題です。

(問題)
a1=2/3 aK/a(K−1)=2Kー3/2K+1であり、
K=2,3,4,……によって定められる数列{an}について
次の問いに答えよ。
(問い)第K項aKを求めよ。
答えはaK=2/(2K+1)(2K−1)です。

考え方として、与式の分母を省いて、
(2K+1)aK=(2K−3)a(K−1)とし、
2K−3と2K+1が隣り合わない奇数の2項より、
2数間の2K−1を両辺にかけて、
(2K+1)(2K−1)aK=(2K+3)(2K−1)a(K−1)
とした上で、「{左辺}は全ての項が等しい数列だから」
左辺=bK、右辺=b(K−1)と置けて、
bK=b1だから、bK=2であり、答えが前述のようになる。
と学校では説明されました。

私が疑問に思うのは鍵カッコの「{左辺}〜」の箇所です。
Kを具体的に代入した所で、右辺と左辺の係数が違いますし、
わざわざ(2K−1)をかけてやる意味が考えても考えても分かりません。成立するとしても、(2K−1)をかける前の
与式でなぜbnなどと置き換えが出来ないのかが、全く
理解できません。 

どうか宜しくお願い致します。

No.896 - 2008/05/30(Fri) 00:52:20

Re: 初めて書き込みさせていただきます。 / 七
>「{左辺}は全ての項が等しい数列だから」
という表現は間違いです。

(2k+1)ak=(2k−3)ak−1
両辺に2k−1をかけて
(2k+1)(2k−1)ak=(2k−1)(2k−3)ak−1
ここで bk=(2k+1)(2k−1)ak とおくと
bk−1={2(k−1)+1}{2(k−1)−1}ak−1
=(2k−1)(2k−3)ak−1
だから
bk=bk−1
この式は{bk}がすべての項が等しい数列であることを示すから
bk=b1
(2k+1)(2k−1)ak=3・1・a1=2
よって ak=2/(2k+1)(2k−1)
です。

No.905 - 2008/05/30(Fri) 07:08:36

Re: 初めて書き込みさせていただきます。 / ヨッシー
>与式でなぜbnなどと置き換えが出来ないのかが
たとえば、
 (2k+1)ak=(2k-3)ak-1 ・・・(i)
において、(i) の左辺を
 bk=(2k+1)ak
とおいたとしても、右辺はbk-1 ではありませんよね?
 bk-1=(2k-1)ak-1
なので、
 bk=(2k-3)bk-1/(2k-1)
となって、結局kが残ってしまいます。

(2k+1)(2k-1)ak=(2k-1)(2k-3)ak-1 ・・・(ii)
とすると、bk=(2k+1)(2k-1)ak
に対して
 (左辺)=bk
 (右辺)=bk-1
となり、bk=bk-1 という定数数列になります。
(ii) のように、左辺と右辺が同じ規則の式の形にするために
(2k-1) を掛けています。

No.906 - 2008/05/30(Fri) 08:39:34

Re: 初めて書き込みさせていただきます。 / 七
自分では余り使わないのですが図のような解法もあります。
No.907 - 2008/05/30(Fri) 12:13:08

本当に感謝しています / 白梅
七様、ヨッシー様、この上なく大変詳しく分かりやすい
解説及び別解をを、予備校の先生以上に
親身に教えて下さって本当にありがとうございました。
周りの人が疑問にも感じず、次の問題へと移る姿を見て
焦りと不安で帰り道はこの問題の事で頭が一杯で、
泣きそうになりました。今は人にこの問題を質問されても
自分の言葉で説明が出来ます。 本当に、本当に
ありがとうございました。

No.918 - 2008/05/30(Fri) 22:35:22
過去問です… / KEY
問1
a,bを実数とし、f(x)=x^2-2a|x|+bと定義する。また、|f(x)|=1を満たす実数xの個数をNとする。以下の問いに答えよ。

(1)a≦0のとき、Nの最大値を求めよ。
(2)N=6となるような点(a,b)の範囲をab平面に図示せよ。


問2
xの方程式ax^2+2bx-a+1=0が-1≦x≦1を満たす解を持つような実数a,bの範囲をab平面に図示せよ。


学校で出されたもので、答えがわかりません…
解答・解説よろしくお願いします><

No.886 - 2008/05/29(Thu) 00:50:34

Re: 過去問です… / ヨッシー
(1)
f(x)=x^2-2ax+b=(x-a)^2-a^2+b (x≧0)
f(x)=x^2+2ax+b=(x+a)^2-a^2+b (x<0)
であり、a≦0 であるので、グラフは図のようになります。


y=1,y=-1 との位置関係が、図のようであれば、Nは最大4になります。

(2)
a>0 のときは、

図のような位置関係のときにN=6となります。
y切片はb、頂点のy座標は-a^2+b であることを踏まえて、
(i)
b>1 かつ -a^2+b=−1→b=a^2−1
(ii)
b<1 かつ -a^2+b<−1→b<a^2−1
以上より、

No.892 - 2008/05/29(Thu) 12:25:45

Re: 過去問です… / KEY
回答ありがとうございます。グラフとてもわかりやすかったですww
No.900 - 2008/05/30(Fri) 03:01:38
全22457件 [ ページ : << 1 ... 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 ... 1123 >> ]