[ 掲示板に戻る ]

過去ログ閲覧モード

(No Subject) / 数学苦手
この解説の最初の計算が分かりません。
No.74034 - 2021/04/29(Thu) 23:51:33

Re: / 数学苦手
これはポイント集のような参考書です。
No.74035 - 2021/04/29(Thu) 23:52:08

Re: / 数学苦手
上のポイント集の真似をして解こうとしました。字が汚くてすみません。
No.74036 - 2021/04/29(Thu) 23:52:59

Re: / 数学苦手
問題はこのような感じです。
No.74037 - 2021/04/29(Thu) 23:53:31

Re: / 数学苦手
なぜ180が2つあるのに1つになっているのか分かりません。
No.74039 - 2021/04/30(Fri) 00:37:46

Re: / 数学苦手
カッコの中がなぜ180xではなく、xになるのでしょうか?
No.74040 - 2021/04/30(Fri) 00:39:56

Re: / ヨッシー
180×5×12−180x を 180でくくって
 180(5×12−x)
です。

No.74044 - 2021/04/30(Fri) 06:52:10

Re: / 数学苦手
じゃあニュートン算というところにメモ書きしてるような括り方も間違えているのでしょうか?
No.74051 - 2021/04/30(Fri) 10:02:56

Re: / 数学苦手
多分合ってますよね?
No.74052 - 2021/04/30(Fri) 10:06:27

Re: / ヨッシー
L+20a=160b
L=20(aー8b)
と書いてあるのでしょうか?
括り方はともかく、正しくはありませんね。

No.74053 - 2021/04/30(Fri) 10:28:51

Re: / 数学苦手
括弧の中は+8bですね
No.74054 - 2021/04/30(Fri) 10:29:53

Re: / ヨッシー
L=20(a+8b)
も間違いです。

No.74055 - 2021/04/30(Fri) 10:31:54

Re: / 数学苦手
文字色何故か変わってました。すいません。移行したら符号逆にするという固定概念に囚われてました。
このような場合は違いますね。

No.74056 - 2021/04/30(Fri) 10:32:48

Re: / 数学苦手
Lの方の式を教えてください。何故そうなるかも良かったら、、
No.74057 - 2021/04/30(Fri) 10:34:07

Re: / 数学苦手
−20(a-8b)ですか?
No.74058 - 2021/04/30(Fri) 10:36:38

Re: / 数学苦手
符号は逆であってましたね
No.74060 - 2021/04/30(Fri) 10:39:35

Re: / 数学苦手
180と12×5の60を掛けるのと180を12、5にそれぞれに掛けるのは同じですよね
No.74061 - 2021/04/30(Fri) 10:42:25

Re: / 数学苦手
落ち着いたらできました。ありがとうございます。
No.74062 - 2021/04/30(Fri) 10:45:36

Re: / 数学苦手
ここは言語化したらこのような感じですか?
No.74075 - 2021/04/30(Fri) 18:40:20

Re: / 数学苦手
60(4×18−54)-30×18のところです。
公式などは多分ないですよね…

No.74076 - 2021/04/30(Fri) 18:42:39

Re: / ヨッシー
60(4×18−54)の部分は、?Aの式を立てた時点で理解しておくべきもので、
まとめて、最初の水量 です。

なぜ、二言目には「公式」ですか?
1000円持って買い物に行きました。
1缶200円のジュース2缶と、1瓶150円のお茶5本買うと
残りはいくらですか?
このような問題で、公式を気にしますか?
それよりも、状況を把握することに注力するでしょう?
この問題も同じ程度の問題です。

No.74077 - 2021/04/30(Fri) 18:57:00

Re: / 数学苦手
残り50円です。とりあえず確認したかっただけです。まあ、公式そのまま使える問題なんてありませんよね。失礼しました。
No.74078 - 2021/04/30(Fri) 19:56:01

Re: / GandB
> 1000円持って買い物に行きました。
> 1缶200円のジュース2缶と、1瓶150円のお茶5本買うと
> 残りはいくらですか?


> 残り50円です。
 ほんとに50円余るのか?

No.74091 - 2021/04/30(Fri) 23:30:33

Re: / ヨッシー
あ、問題もデタラメでしたね。

失敬。

No.74099 - 2021/05/01(Sat) 00:41:31

Re: / 数学苦手
150円足りないでした
No.74185 - 2021/05/02(Sun) 16:56:52
幾何学 / 虎
曲線:R→R^2をp(t)=(t,t^2)により定める。pの弧長パラメータ表示を求めよ。

p'(t)=(1,2t) , |p'(t)|=√(1+4t^2)
この2つを使ってs=∫(0〜t) √(1+4u^2)duを求めようとしたのですが、計算がうまくまとまらず出来ませんでした。
計算、弧長パラメータ表示を教えてください。

No.74023 - 2021/04/29(Thu) 20:59:31

Re: 幾何学 / 関数電卓
> s=∫(0〜t)√(1+4u^2)du
u=(e^v−e^(-v))/4 と置くと進められます。
結果は こちら です。

No.74030 - 2021/04/29(Thu) 22:31:42

Re: 幾何学 / さち
解決しました!
ありがとうございます。

No.74032 - 2021/04/29(Thu) 23:05:14
命題の否定 / re
pならばqという命題の否定を考えるとき、なぜ結論であるqだけを否定すればよいのですか?
No.74020 - 2021/04/29(Thu) 20:12:43

Re: 命題の否定 / ヨッシー
p⇒q の否定が p⇒¬q ということでしょうか?
それは違いますね。

No.74042 - 2021/04/30(Fri) 06:09:45

Re: 命題の否定 / re
このような問題なのですが
No.74047 - 2021/04/30(Fri) 09:30:27

Re: 命題の否定 / re
答えです
No.74048 - 2021/04/30(Fri) 09:31:05

Re: 命題の否定 / ヨッシー
これを p⇒q に置き換えると
p:√2が無理数 かつ a+b√2=0
q:a=0 かつ b=0
b≠0 から 「√2 が無理数に矛盾」を導いているのは、
qの否定からpの否定を導いているので、
qの否定だけを言っているわけではありません。

No.74050 - 2021/04/30(Fri) 09:49:58

Re: 命題の否定 / re
分かりました
これは対偶による証明ですか?それとも背理法ですか?

No.74068 - 2021/04/30(Fri) 14:07:28

Re: 命題の否定 / ヨッシー
こちらとそれに続くこちらでも同じ問題で同じ議論がされているので、出典は同じかも知れません。

a≠0 または b≠0 を満たす全てのa,bの組において、a+b√2≠0 である
を示すのが対偶による方法。
a≠0 または b≠0であり、a+b√2=0 となるa,bの組が1つでもあったら、矛盾が生じる
というのが背理法ですね。

その意味では、上の解答は背理法であり、
 ¬q⇒¬p
を示しているのとも、ちょっと違いますね。

No.74071 - 2021/04/30(Fri) 15:10:55

Re: 命題の否定 / re
よくわかりました。ありがとうございます。背理法と対偶による証明は似てるようで似てないですね。
No.74079 - 2021/04/30(Fri) 20:03:38
文字の入ったルート / 斉藤
1/√(n+k)=1/{√(n)√(1+k/n)}は√(n)をそのまま出すと覚えてはいけませんよね? nは自然数で1/0での意味ではないです。
No.74014 - 2021/04/29(Thu) 19:18:55

Re: 文字の入ったルート / 斉藤
写真の様な感じで、ルートの中が文字の足し算の形の変形は、丁寧にやった方がいいですか?でも、やった感じ、自然数条件の足し算では、安直に覚えても、不都合ないと思いました。
(すいません、なんか、自己完結した感じがしますが、ご教授お願いします。)

No.74016 - 2021/04/29(Thu) 19:26:21

Re: 文字の入ったルート / IT
1/√(n+k) = 1/√(n(1+k/n))=1/(√(n)√(1+k/n)) でよいのでは?

√(3+4)= √7 です。 途中の式は不要だと思います

No.74017 - 2021/04/29(Thu) 20:08:10

Re: 文字の入ったルート / ヨッシー
nが自然数(というか正の数)であれば、√n をくくり出す、で良いと思います。
No.74018 - 2021/04/29(Thu) 20:08:37
複素数の問題 / さち
(z+4)/(iz+4)が実数となる様な複素数zの描く複素数平面上の図形をCとする。また、C(複素数全体の集合)上の3点2,-4i,4-4iを6+14i,10+2i,14-2iに写す1次分数変換をw=f(z)とする。
(1)Cを複素平面上に図示し、C上で原点からの距離が最大となる点を求めよ。
(2)w=f(z)を求めよ。
これら2問がわかりません。
ご教授お願いいたします。

No.74010 - 2021/04/29(Thu) 18:37:41

Re: 複素数の問題 / IT
(1)
複素数z が実数であるための必要十分条件を
zとzの共役複素数との関係式で表すとどうなりますか?

その関係式を(z+4)/(iz+4)に使う。
通分する。
分子を展開して整理する。

No.74015 - 2021/04/29(Thu) 19:25:15

Re: 複素数の問題 / さち
ありがとうございます。
z=z'という関係から、zにz'を代入しました。
分母を有理化して
{-4z'-16+(z'^2+4z')}/(-z'^2-16)
'をバーの代わりに使用しています。
ここからどう図示をすればよいのでしょうか。
お手数おかけし申し訳ございません。

No.74021 - 2021/04/29(Thu) 20:21:11

Re: 複素数の問題 / IT
> z=z'という関係から、zにz'を代入しました。
違います。

実数なのは、(z+4)/(iz+4) ですから
(z+4)/(iz+4)=((z+4)/(iz+4))'
(z+4)/(iz+4)-((z+4)/(iz+4))' =0 です。
これを通分します。

No.74025 - 2021/04/29(Thu) 21:17:31

Re: 複素数の問題 / さち
失礼しました、問題を読み間違えておりました。
計算したところ、-2i|z|^2+4(z-z')-4i(z+z')=0となりました。
この後、どのように図示すればよいのでしょうか。

No.74028 - 2021/04/29(Thu) 21:39:44

Re: 複素数の問題 / IT
> 計算したところ、-2i|z|^2+4(z-z')-4i(z+z')=0となりました。
i/2 を掛けて 式を簡単にしてください。
うまく整理すると、
(z-α)(z-α)'=ββ' という形にできると思います。

No.74029 - 2021/04/29(Thu) 22:03:06

Re: 複素数の問題 / さち
求めることができました!
ありがとうございます。

No.74033 - 2021/04/29(Thu) 23:05:40
命題と否定 / re
命題pもpの否定もどちらも真(もしくは偽)というものは無いのですか?
No.73997 - 2021/04/29(Thu) 15:46:15

Re: 命題と否定 / ヨッシー
ありません。
No.74000 - 2021/04/29(Thu) 17:13:34

Re: 命題と否定 / re
なぜですか?
No.74003 - 2021/04/29(Thu) 17:24:21

Re: 命題と否定 / ヨッシー
Pが真のときに偽、偽のときに真となるような命題を
Pの否定と言うからです。

No.74005 - 2021/04/29(Thu) 17:31:11

Re: 命題と否定 / re
そもそもの定義がそうなんですね。高校の教科書には、『条件「pでない」を条件pの否定という』と書いてありますが、これは「pでない」という条件が、たまたまpと真偽が反対ということですか?
No.74006 - 2021/04/29(Thu) 17:40:52

Re: 命題と否定 / ヨッシー
Wikipedia に
数理論理学において否定とは、命題の真と偽を反転する論理演算である。
とあります。
これを「pでない」と表現するわけですが、その裏には「真なら偽、偽なら真」というのが潜んでおり、
pと¬pの真偽が逆転するのは必然です。

No.74007 - 2021/04/29(Thu) 18:08:30

Re: 命題と否定 / re
分かりましたありがとうございます!
No.74008 - 2021/04/29(Thu) 18:26:59

Re: 命題と否定 / re
あと命題と条件をまぜて質問していた事に今気づきました。すいません
No.74009 - 2021/04/29(Thu) 18:29:42
有名題 / simple is best
よろしくお願いいたします
No.73996 - 2021/04/29(Thu) 15:21:49

Re: 有名題 / X
以下、△AOB,△BOC,△COAの面積を各々S,T,Uとします。

条件から
|↑OA|=|↑OB|=|↑OC|=1 (A)
(イ)
条件式((P)とします)と↑OA、↑OB、↑OCとの内積を取り
(A)を代入すると
4↑OA・↑OB+5↑OC・↑OA=-3 (B)
3↑OA・↑OB+5↑OB・↑OC=-4 (C)
3↑OC・↑OA+4↑OB・↑OC=-5 (D)
(B)(C)(D)を連立して解くと
(↑OA・↑OB,↑OB・↑OC,↑OC・↑OA)=(0,-4/5,-3/5)
∴(A)より
(cos∠AOB,cos∠BOC,cos∠COA)=(0,-4/5,-3/5)
となるので
0≦∠AOB≦π,0≦∠BOC≦π,0≦∠COA≦π
により
(sin∠AOB,sin∠BOC,sin∠COA)=(1,3/5,4/5)

S=1/2
T=3/10
U=4/10
ここで(P)より点A,B,Cはそれぞれ辺BC,CA,ABに関して
点Oと同じ側にあるので
点Oは△ABCの内部にあります。
よって求める面積は
S+T+U=6/5

(ロ)
(イ)と方針は同じです。但し、この場合は
点Aのみ辺BCに関して点Oと反対側にあるので
求める面積は
S-T+U=…
となります。

No.74001 - 2021/04/29(Thu) 17:21:08

Re: 有名題 / simple is best
X様
以下の考え方にいたりまた

お願いします

No.74064 - 2021/04/30(Fri) 11:09:57
有名題 / simpie is best
よろしくお願いいたします。

問題

No.73995 - 2021/04/29(Thu) 15:08:40

Re: 有名題 / X
条件から
A(4+2cosθ,3+2sinθ),B(4+2cos(θ+π/2),3+2sin(θ+π/2))
(0≦θ<2π)
と置くことができるので
↑OA・↑OB=(4+2cosθ){4+2cos(θ+π/2)}+(3+2sinθ){3+2sin(θ+π/2)}
=(4+2cosθ)(4-2sinθ)+(3+2sinθ)(3+2cosθ)
=25+8cosθ-8sinθ+6sinθ+6cosθ
=25-2sinθ+14cosθ
=25-(10√2)sin(θ-φ)
(但しφはtanφ=7,0≦φ<π/2なる角)
∴↑OA・↑OBの最大値は25+10√2
このとき
θ-φ=3π/2
∴θ=3π/2+φ
となるので
A(4+2cos(3π/2+φ),3+2sin(3π/2+φ)),B(4+2cos(2π+φ),3+2sin(2π+φ))
これより
A(4-2sinφ,3-2cosφ),B(4+2cosφ,3+2sinφ)
∴A(4-(7/5)√2,3-(1/5)√2),B(4+(1/5)√2,3+(7/5)√2)

↑OA・↑OBの最小値は25-10√2
このとき
θ-φ=π/2
∴θ=π/2+φ
となるので
A(4+2cos(π/2+φ),3+2sin(π/2+φ)),B(4+2cos(π+φ),3+2sin(π+φ))
これより
A(4-2sinφ,3+2cosφ),B(4-2cosφ,3-2sinφ)
∴A(4-(7/5)√2,3+(1/5)√2),B(4-(1/5)√2,3-(7/5)√2)

A,Bの立場を入れ替えることを考えると
↑OA・↑OBの最大値は25+10√2
(このとき
A(4-(7/5)√2,3-(1/5)√2),B(4+(1/5)√2,3+(7/5)√2)
又は
A(4+(1/5)√2,3+(7/5)√2),B(4-(7/5)√2,3-(1/5)√2))
↑OA・↑OBの最小値は25-10√2
(このとき
A(4-(7/5)√2,3+(1/5)√2),B(4-(1/5)√2,3-(7/5)√2)
又は
A(4-(1/5)√2,3-(7/5)√2),B(4-(7/5)√2,3+(1/5)√2))

No.73999 - 2021/04/29(Thu) 16:58:02
(No Subject) / 確率の最大
次の問題の(2)の考え方を知りたいです。
3回の試行のうち
?@〜?Bの順で考えてはダメなのでしょうか?
ダメであればその理由が知りたいです。
?@『白玉又は赤玉を取り出し、硬貨の裏が出る』
?A『赤玉を取り出し、硬貨の表が出る』
?B『白玉を取り出し、硬貨の表が出る』

No.73989 - 2021/04/29(Thu) 10:46:14

Re: / X
試行の組の一つとしては問題ありません。
但し、飽くまで「一つとして」ですので
他の試行の組も、試行の組全体を構成する
ために過不足なく考える必要があります。

No.73990 - 2021/04/29(Thu) 10:55:55

Re: / 確率の最大
?@から考えてもokですか?
また、その場合、計算過程などどうなるでしょうか。

No.73991 - 2021/04/29(Thu) 11:21:42

Re: / ヨッシー
言い回しが気になりますが、
?@から考えるのではない場合の計算過程は理解されているのでしょうか?

No.73994 - 2021/04/29(Thu) 13:12:46

Re: / 確率の最大
?@から考えた場合、白玉を取る場合と赤玉を取る場合で場合分けをして?A、?Bを考えるイメージですか?
No.73998 - 2021/04/29(Thu) 16:56:55

Re: / ヨッシー
元の質問からは、
?@?A?Bの順で考えて答えは出したけれども、違うと言われた。
もしくは、模範解答と違っていた。
この方法ではダメなのですか?
と読み取れたのですが、
?@?A?Bの順での答えも出ていないと言うことですか?

No.74002 - 2021/04/29(Thu) 17:23:19

Re: / 確率の最大
私は?A、?B、?@の順で考えたのですが、
?@、?A、?Bの順で考えたら場合分けが複雑になるのかなーと気になって

No.74013 - 2021/04/29(Thu) 19:12:24

Re: / ヨッシー
はい、そこで X さんの記事 73990 の出番です。
よーく読んでください。

No.74019 - 2021/04/29(Thu) 20:10:29

Re: / 確率の最大
ん、、どういう事ですかね?
No.74022 - 2021/04/29(Thu) 20:28:26

Re: / X
条件を満たす試行の組は
?@、?A、?B
の3つの試行の組でできる順列の数である
6通り
存在するということです。

つまり、順序を考慮に入れた3つの試行の組
?@?A?B
?@?B?A
?A?@?B
?A?B?@
?B?@?A
?B?A?@
の6通りそれぞれの場合の確率の和が
求める確率となります。

どれか1つの試行の組の確率だけを
求めればよい、ということではない、
ということです。

No.74027 - 2021/04/29(Thu) 21:37:37

Re: / 確率の最大
?@が3番目の時はいいですが、
1番目に2番目に来る時には
?Bにおいて更に赤玉を引く場合と白玉を
引く場合というように更に詳しく場合分けする必要がありますか?

No.74031 - 2021/04/29(Thu) 23:01:58

Re: / ヨッシー
「場合分けする必要があります」と回答されたと仮定して
?@?A?B の順の確率の算出を、途中まででも良いので、
書いてみてください。

No.74045 - 2021/04/30(Fri) 07:09:13

Re: / 確率の最大
?@5!×(1/2)
?A→?@で赤ととったか白をとったかで変わってきませんか?

No.74066 - 2021/04/30(Fri) 12:21:22

Re: / ヨッシー
前半は 5!×(1/2)=60 で、確率になっていません。

後半は、?@で
赤をとったとき、箱に残っているのは・・・
白をとったとき、箱に残っているのは・・・
のように、具体的にどう違うかを書いてもらえますか?

No.74067 - 2021/04/30(Fri) 12:44:46

Re: / 確率の最大
?@5!/(5C2)×(1/2)ですかね?

後半部分の解答も悩んでて、、

No.74069 - 2021/04/30(Fri) 14:09:45

Re: / 確率の最大
解答はどのようになるのでしょうか?
No.74070 - 2021/04/30(Fri) 14:10:29

Re: / ヨッシー
こういう問題を考えてみてください。

取り出して硬貨を投げるのくだりは上の問題の通りとします。

問題1:白玉3個、赤玉2個が入っている箱から、玉を1個取り出し、色を確認せずに硬貨を投げて、裏が出たので玉を箱に戻す確率はいくらですか?また、この試行後に、箱に入っている玉は白、赤それぞれ何個ですか?

問題2:黒玉5個が入っている箱から、玉を1個取り出し、硬貨を投げて、裏が出たので玉を箱に戻す確率はいくらですか?また、この試行後に、箱に入っている玉は何個ですか?

問題3:米粒が1000粒入っている箱から、米粒を1粒取り出し、硬貨を投げて、裏が出たので米粒を箱に戻す確率はいくらですか?また、この試行後に、箱に入っている米粒は何個ですか?

問題4:米粒が1000粒入っている箱から、適当に米粒をつかみ、硬貨を投げて、裏が出たのでつかんだ米粒を箱に戻す確率はいくらですか?また、この試行後に、箱に入っている米粒は何個ですか?

No.74072 - 2021/04/30(Fri) 15:23:54

Re: / 確率の最大
ありがたいのですが
余計に混乱してきました、、

No.74073 - 2021/04/30(Fri) 15:41:33

Re: / ヨッシー
ではこれはどうですか?

あなたは手を握って、しばらくして開きました。
その間に誰かが硬貨を投げて裏が出る確率は?

No.74074 - 2021/04/30(Fri) 16:05:04

Re: / 確率の最大
1/2ですかね
No.74085 - 2021/04/30(Fri) 22:44:57

Re: / ヨッシー
では、この「手を握って、しばらくして開きました。」の状況と、
上の?@、または直前に出した問題1〜4の状況と、何か違いますか?

No.74088 - 2021/04/30(Fri) 23:15:18

Re: / 確率の最大
?@では赤白のいずれでもいいから1/2と考えて
?Aから検証するイメージですか?

No.74100 - 2021/05/01(Sat) 06:33:39

Re: / 確率の最大
解答がありました。質問が2つあります。
一つ目→?@の白玉又は赤玉を取り出すパターンは考えられないので
硬貨の裏が出る確率の1/2だけ考える。のでしょうか?

二つ目→模範解答の3!の詳細は?@?A?Bを並び替えた6通り を
表しているのでしょうか?

No.74103 - 2021/05/01(Sat) 11:41:38

Re: / ヨッシー
>何か違いますか?
に対する答えはどうなりましたか?

No.74106 - 2021/05/01(Sat) 14:07:16

Re: / 確率の最大
ん?どういう事でしょうか?
No.74111 - 2021/05/01(Sat) 15:10:44

Re: / ヨッシー
言葉通りの意味ですが。
答えてませんよね?

No.74120 - 2021/05/01(Sat) 17:00:10

Re: / 確率の最大
同じですか?
No.74144 - 2021/05/01(Sat) 22:51:17

Re: / ヨッシー
うーむ。
質問に質問で返すのはどうかと思いますが
「同じ」ですよね?

どうせ戻すのですから、何をつかもうが、いくつつかもうが、
仮につかんでなくても、全部同じで、すべては、硬貨投げで
裏が出ることだけにかかっています。

にもかかわらず、場合分けとか言っているのは、全部不要な考察で、
?@は一番扱いやすい事象なのです。

No.74147 - 2021/05/02(Sun) 06:22:24
複素数 / さち
複素数の問題です。
(1){√2(3+2i)/(1+5i)}^2021
(2)i^i^i
値の求め方が分かりません。
よろしくお願いいたします。

No.73985 - 2021/04/28(Wed) 22:45:16

Re: 複素数 / X
(1)
(与式)=e^{i2021{arctan(2/3)-arctan5}}
ここで加法定理により
tan{arctan(2/3)-arctan5}=(2/3-5)/(1+10/3)
=-1
更に
π/6<arctan(2/3)<π/4
π/4<arctan5<π/2
により
-π/3<arctan(2/3)-arctan5<0
に注意すると
arctan(2/3)-arctan5=-π/4
よって
(与式)=e^{-i(505π+π/4)}=e^(-i5π/4)
=e^(i3π/4)
=-1/√2+i/√2

(2)
i^i={e^(iπ/2)}^i
=e^(-π/2)
∴(与式)=i^{e^(-π/2)}
=cos{(π/2)e^(-π/2)}+isin{(π/2)e^(-π/2)}

No.73988 - 2021/04/29(Thu) 06:06:40

Re: 複素数 / さち
ありがとうございます!
No.74011 - 2021/04/29(Thu) 18:37:56

Re: 複素数 / 関数電卓
(2)
 a=i^i=e^(π/2)i・i=e^(-π/2)=0.2078…
 b=i^a={e^{(π/2)i}^a
  =e^i{(π/2)・e^(-π/2)}
(π/2)e^(-π/2)=θ とおき
 b=cosθ+isinθ
 θ=(π/2)e^(-π/2)=(1.5707…)×(0.20787…)≒0.3265[rad]≒18.7°

と,ここまでやって,私は初めて「解けた」と感じます。
※ 単なる個人の好みとこだわりですが…

No.74026 - 2021/04/29(Thu) 21:23:12

Re: 複素数 / らすかる
(2)
i^i={e^((1/2-2n)πi)}^i=e^((2n-1/2)π) (nは整数)なので
i^(i^i)=i^{e^((2n-1/2)π)}
=cos{(2m+1/2)πe^((2n-1/2)π)}+isin{(2m+1/2)πe^((2n-1/2)π)} (m,nは整数)

No.74038 - 2021/04/30(Fri) 00:10:13
サイクロイドの接線の傾き / ラッセル
マセマの「数?V実力アップ問題集」問題23(p.37)
左側の下の方でcost=0の解がπ/2だけになっていますが
tの変域が2πまでであれば3π/2も解となります。
3π/2が除かれる理由を教えてください。

No.73968 - 2021/04/28(Wed) 13:28:20

Re: サイクロイドの接線の傾き / ヨッシー
0<t<π だからです。
No.73973 - 2021/04/28(Wed) 16:42:13
数ll / たいが
a>0とする。x,yの連立方程式{ay=x-x^3,ax=y-y^3}がx>0,y>0を満たす解(x,y)ももつようなaの値の範囲を求めよ。

どなたか解説よろしくお願いします🙇⤵️

No.73966 - 2021/04/28(Wed) 12:43:07

Re: 数ll / らすかる
ay=x-x^3がx>0でy=xと共有点を持てばよい。
# 共有点(t,t)があればax=y-y^3もそれを満たす。
# 逆に共有点がなけれぱ2式のグラフはy=xに関して
# 上側と下側に分かれるので共通解はない。
代入して
ax=x-x^3
x{x^2-(1-a)}=0
x>0である解を持つためには1-a>0
∴(0<)a<1

No.73975 - 2021/04/28(Wed) 17:52:43
e / aiko
e^{2.3} (自然数 e の2.3乗)が約 10であることを用いて、e^{-30/2.2} を概算しなさい。


この問題を教えてください。おねがいします!

No.73965 - 2021/04/28(Wed) 11:32:20

Re: e / ヨッシー
30÷2.2÷2.3≒30÷5=6 なので、
 e^(-30/2.2)≒(e^2.3)^(-6)≒10^(-6)

程度の精度で良いのでしょう。
与えられたのが「約10」なので。

No.73967 - 2021/04/28(Wed) 12:51:48

Re: e / aiko
多分その精度でオッケーです!!ありがとうございました!
No.73969 - 2021/04/28(Wed) 13:34:21
上限下限 / クラーク
集合A⊂Rの上限と下限を求める問題が分かりません。
A={(1-e^(-h))/h ; h>0}
ご教授お願いいたします。

No.73952 - 2021/04/27(Tue) 23:03:23

Re: 上限下限 / IT
f(h)= (1-e^(-h))/h とおきます。
lim[h→+0]f(h)を求める.(微分の定義をつかってもできます)
lim[h→∞]f(h)を求める.
f(h)の増減を調べる。(何回か微分を使う)

No.73960 - 2021/04/28(Wed) 07:30:28

Re: 上限下限 / クラーク
f(h)を何度か微分し、
f'(h)={e^(-h)-1+e^(-h)}/h^2
f"(h)={e^(-h)(-h^2-2h+2e^h-2)}/h^3
が出てきました。
ここから増減表をどのように書けば良いのかがわかりません。
お力添えいただけますと幸いです。

No.73979 - 2021/04/28(Wed) 20:32:17

Re: 上限下限 / IT
> f(h)を何度か微分し、
> f'(h)={e^(-h)-1+e^(-h)}/h^2

記入ミスでしょうか? 
f'(h)={he^(-h)-1+e^(-h)}/h^2 では?

> f"(h)={e^(-h)(-h^2-2h+2e^h-2)}/h^3
> が出てきました。

h^2>0 なので 分子のg(h)=he^(-h)-1+e^(-h)だけを微分してみるとどうでしょう?
g(0)=0 と g'(h) の正負を使うと f'(h) の正負が分かりそうです。

No.73981 - 2021/04/28(Wed) 21:45:14

Re: 上限下限 / クラーク
申し訳ございません、記入ミスでした。
なんとなくですが理解して解くことができました。
ありがとうございました!

No.73984 - 2021/04/28(Wed) 22:28:30
行列 / あさひ
1×3行列と3×1行列の積は1行1列の行列になると思い、結果を(-3)のような形で回答したところ教授から「-3はスカラーで、行列とスカラーは別物なので()はつけない」というような形で、減点をされました
これはそういうルールなのでしょうか?

No.73944 - 2021/04/27(Tue) 19:25:10

Re: 行列 / ヨッシー
完全否定はしていませんが、微妙な言い回しですね。

ただ、「(a) は」と書いている時点で、存在を認めているとも。

No.73948 - 2021/04/27(Tue) 20:34:32

Re: 行列 / IT
元東大教授齋藤正彦先生の「線型代数学」(東京図書)の練習問題(24〜25ページ)には

(1,2,3)t(-3,-2,-1)=(-10) とあります。(2つめは3行1列

私の知る範囲では、齋藤正彦先生は、線型代数学(教育?)の日本の第一人者の一人かと思います。

数学は「一般化」を良しとする面があるので、1行1列の行列と考える方が良いと思います。
行列のうち(特別な) 1行のものが横ベクトル、1列のものが縦ベクトルであり、1行1列のものがスカラーになるのであり、スカラーと同一視できることを明確にするため()を外す。ということかなと思われますが、減点するのはおかしいと思います。

「行列とスカラーは別物なので」というのは、教授の方が間違っていると言わざるを得ないと思います。

「理系のための線型代数の基礎(代表著者 永田雅宜)」紀伊国屋書店には
「体Kの要素を、下のように、縦にm個ずつ、横にn個ずつ並べたものを(m,n)行列という。
・・・・・

(1,1)行列は、Kの要素と同一視する。」

また、「線型代数入門(齋藤正彦著)」東京大学出版会には

行列の定義として
定義 自然数m,nに対し、mn個の複素数a[i,j](i=1,2,...,m);j=1,2,...,n)を、縦m個、横n個の長方形に並べた表を、(m,n)型の行列(matrix)と言う。

となっています。当然(1,1) 型の行列もあるということです。

No.73949 - 2021/04/27(Tue) 20:35:55

Re: 行列 / 黄桃
その先生は講義で、1x1行列はスカラーとみなす、とか、答が1x1行列になる場合はスカラーだ、とか言ってたりしませんか?

そうでなければ、初学者に減点はちょっと厳しいと思います。

ただ、個人の意見ですが、実際問題として、1x1行列とスカラーを区別するのは、デメリットしかないので、今のうちに 1x1行列とはスカラーのこと、と思ってしまった方がいいと思います。
その理由は、ヨッシーさんが書いたように内積や2次形式を扱うときに面倒だからです。
例えば、a,b が縦ベクトルの時 (a,b)a (aとbの内積の値をベクトルaに掛けたベクトル)を考える場合、(a,b)を ta*b (taはaを横ベクトル表記にしたもの)と書いたら、1x1行列となり、縦ベクトルとの積は定義できないことになります。
xを縦ベクトル、Aを正方行列として、(tx)*A*x という「関数」を考えるのが2次形式ですが、これも1x1行列だと関「数」ではありません。
結局、1x1行列の(1,1)成分、という書き方をしないといけませんが、慣用とは異なる上に煩わしいだけです。

#行列の積だけを扱うなら1x1行列をスカラー扱いする必要はない(必要性が説明できない)けど、
#内積や2次形式等が出てくるとヨッシーさんが示されているようなことが書かれていると思います。
#それなら、最初から1x1行列はスカラーとする、と教える先生がいてもおかしくありません。

No.73986 - 2021/04/28(Wed) 23:54:01
(No Subject) / けいき
連投失礼します。先程はありがとうございました。理解できました。
もう一つあるのですが、こちらは一応経済学の数式です。
αを求める問題なのですが、何故上記の式から10000という数字が出るのかがわかりません。問題も載せておきます。

問題

ある財の需要関数、供給関数が D(p) = α − 2p、S(p) = 3p であるとする。この 時、総余剰が 150 万円であることがわかっているとする。さて、α を求めよ。

No.73940 - 2021/04/27(Tue) 17:37:53

Re: / X
問題の方程式の左辺を150万と思い込んでいませんか?
そうではなくて1500万になっています。
そこを踏まえてもう一度解いてみて下さい。

No.73943 - 2021/04/27(Tue) 17:52:31

Re: / けいき
すみません。やはりわかりません。15,000,000=3/20α²で方程式を解いてもα=125000 になります。 どうしたらいいか全くわかりません、、
No.73961 - 2021/04/28(Wed) 09:36:41

Re: / ヨッシー
15,000,000=(3/20)α²
両辺3で割って、
 5,000,000=α²/20
次は?

No.73962 - 2021/04/28(Wed) 09:46:24

Re: / けいき
5,000,000=(3/20)α²
5,000,000=α²/20
250000=α²
これでどうでしょうか・・・?ただ、ここからどうやってα=10000にもっていくのかわかりません・・・

No.73970 - 2021/04/28(Wed) 14:21:47

Re: / ヨッシー
一行目の 5,000,000 は 15,000,000 の間違いだとして、
私が書いたように
両辺3で割って
のような説明を書いてください。

もちろん、a=10,000 になるには、
 a^2=100,000,000
でないといけないので、上の変形は誤りです。

No.73971 - 2021/04/28(Wed) 14:50:05

Re: / けいき
あ!わかりました!ありがとうございます!!
20で×ところを、20で両辺を割っていまた!!
大変初歩的なミスをしてしまいました。。

5,000,000=α²/20
ここを20で掛けて、
100,000,000=α²
ということですよね??

No.73972 - 2021/04/28(Wed) 16:30:33

Re: / ヨッシー
はい。

気付いてよかったです。

No.73974 - 2021/04/28(Wed) 16:46:30
ユークリッドの互除法 / takuma 高2
a = 19561222, b = 19560124 として
A · a + B · b = GCD{a, b}
となる整数 A, B を求めよ

問題の位が大きすぎて、計算が不安です
よろしくお願いします

No.73939 - 2021/04/27(Tue) 15:54:20

Re: ユークリッドの互除法 / ヨッシー
19561222=19560124+1098
19560124=1098×17814+352
1098=352×3+42
352=42×8+16
42=16×2+10
16=10+6
10=6+4
6=4+2
4=2×2

ここまでが互除法

上からたどると、
1098=19561222−19560124
352=19560124−1098×17814
  =19560124−(19561222−19560124)×17814
  =19560124×17815−19561222×17814
42=1098−352×3
  =(19561222−19560124)−(19560124×17815−19561222×17814)×3
  =19561222×53443−19560124×53446
16=352−42×8
  =(19560124×17815−19561222×17814)−(19561222×53443−19560124×53446)×8
  =19560124×445383−19561222×445358
これを繰り返すんですかね。

No.73950 - 2021/04/27(Tue) 20:57:59

Re: ユークリッドの互除法 / 関数電卓
(参考まで)
 a=19,561,222=2・3^2・11・223・443=2・19・514,769
 b=19,560,124=2^2・37・149・887
 GCD(a,b)=2
よって,
 3^2・11・223・443A+2・37・149・887B=1
の整数解 A,B を求める。

私なんぞは,とても筆算ではできません。
こちら にあるように,
 A=7,784,131=31・297・857
 B=−7,784,170=−2・5・778,417
となるようですね。

高校生が使う問題集の問題とはとても思えない。出典は何ですか?
※ 失礼しました。(事後修正)

No.73951 - 2021/04/27(Tue) 21:25:33

Re: ユークリッドの互除法 / らすかる
> 関数電卓さん
a=19561222なので9780111→9780611ですね。
正しくはA=6056869, B=-6057209となるようです。

No.73953 - 2021/04/27(Tue) 23:27:16

Re: ユークリッドの互除法 / IT
a=19561222, b=19560124
a-b=1098=2×3×3×61
aは2で割り切れ,3,61で割り切れない。
よって gcd(a,b)=2
c=a/2=9780611,d=b/2=9780062 とおき
c,dについてユークリッドの互除法を使うと

9780611=9780062+549
9780062=549×17814+176
549=176×3+21
176=21×8+8
21=8×2+5
8=5+3
5=3+2
3=2+1

逆にたどると
1=3-2
=3-(5-3)
=3×2-5
=(8-5)×2-5
=8×2-5×3
=8×2-(21-8×2)×3
=8×8-21×3
=(176-21×8)×8-21×3
=176×8-21×67
=176×8-(549-176×3)×67
=176(8+3×67)-549×67
=176×209-549×67
=(d-17814×549)×209-549×67
=209d-(17814×209+67)×549
=209d-3723193(c-d)
=-3723193c+3723402d

A=-3723193,B=3723402 が答えの1つ
よって 一般解は A=-3723193+dt,B=3723402-ct,tは整数。

(途中電卓の力を借りました。)

No.73958 - 2021/04/28(Wed) 00:21:27

Re: ユークリッドの互除法 / takuna 高2
みなさんご回答誠にありがとうございます!
学内テストで出された問題でしたが、制限時間内に解けずにいました…
ありがとうございました

No.73978 - 2021/04/28(Wed) 19:41:15
(No Subject) / けいき
どうして二行目の式が三行目の式になるのかわかりません。問題文の掲載が必要でしたら、アップロードします。
No.73937 - 2021/04/27(Tue) 13:29:17

Re: / ヨッシー
x^2+3x=x^2+2(3/2)x+(3/2)^2−(3/2)^2
  =(x+3/2)^2−(3/2)^2
という変形と同じです。

No.73938 - 2021/04/27(Tue) 14:15:14
(No Subject) / Ran
この答えを教えてください。
お願いします。

No.73936 - 2021/04/27(Tue) 13:29:04

Re: / X
(i)
Kを図示すると
直線y=1-x,x軸、y軸で囲まれた周および内部
となります。
∴∫∫[K]xydxdy=∫[x:0→1]∫[y:0→1-x]xydydx
=∫[x:0→1]{(1/2)x(1-x)^2}dx
=[(1/6)x(x-1)^3][x:0→1]-(1/6)∫[x:0→1]{(x-1)^3}dx
=-(1/24)[(x-1)^4][x:0→1]
=1/24

(ii)
Kを図示すると
円x^2+y^2=1,x軸、y軸で囲まれた周および内部K
(但し内部が第1象限にあるもの)
となります。よって
∫∫[K]dxdy=∫[θ:0→π/2]∫[r:0→1]rdrdθ
(注:極座標に変換しています)
=π/4

No.73942 - 2021/04/27(Tue) 17:48:50

Re: / Ran
すいません、nってなんですか???
No.73963 - 2021/04/28(Wed) 10:46:35

Re: / Ran
> すいません、nってなんですか???


すいません、ぱいですね、ありがとうございました(+o+)

No.73964 - 2021/04/28(Wed) 10:50:37
数lll / けいと
次の極限を求めよ。ただし、aは定数である。
lim n→∞ n{(a^1/x)-1},(a>0,a≠0)

解説よろしくお願いします。

No.73935 - 2021/04/27(Tue) 10:40:33

Re: 数lll / X
>>lim n→∞ n{(a^1/x)-1},(a>0,a≠0)

lim[n→∞]n{a^(1/x)-1},(a>0,a≠1)
と解釈して回答を。(この式を(A)とします。)


条件から
a^(1/x)≠1
に注意すると
(i)a^(1/x)<1のとき
(A)=-∞
一方、このとき
(I)0<a<1のとき
0<1/x
∴0<x
(II)1<aのとき
同様にして
x<0
(ii)1<a^(1/x)のとき
(A)=∞
一方、このとき
(I)0<a<1のとき
x<0
(II)1<aのとき
0<x

以上から
(A)=∞((0<a<1かつx<0)又は(1<aかつ0<x)のとき)
(A)=-∞((0<a<1かつ0<x)又は(1<aかつx<0)のとき)

No.73941 - 2021/04/27(Tue) 17:40:11
全22631件 [ ページ : << 1 ... 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 ... 1132 >> ]