[ 掲示板に戻る ]

過去ログ閲覧モード

材料力学について / らぴす
材料力学の問題です。
(3)のεxまでは理解できるのですが、λの積分の計算がなぜこうなるのかを回答を見ても解りませんでした。
初歩的ですがご教示いただけますと幸いです。
よろしくお願いいたします。

No.86512 - 2023/10/01(Sun) 12:43:24

Re: 材料力学について / X
右下の添付写真では、λの計算式が3行並んでいる
ようですが、1行目から分からない
ということですか?

No.86515 - 2023/10/01(Sun) 18:04:45

Re: 材料力学について / X
それとも、問題文で前提として使ってもよいとしている
dλ=(ε_x)dx
が成立する理由が分からない、ということですか?

No.86516 - 2023/10/01(Sun) 18:07:10

Re: 材料力学について / らぴす
説明不足ですみません。
λの計算式2行目から分からない状態です。
計算式がより詳細に書かれていたら理解できるかも知れませんが、1行目から3行目の答えになる過程が理解出来てません。
すみません。

No.86518 - 2023/10/01(Sun) 22:34:04

Re: 材料力学について / X
頭についた係数は脇に置くと、問題の積分は
∫[0→t]dx/(Ax+B)^2
(A,Bは定数)
の形になっています。

一般にf(x)の不定積分をF(x)とすると
∫f(Ax+B)dx=(1/A)F(Ax+B)+C
(Cは積分定数)
(∵)Ax+B=uと置いて置換積分

後はよろしいですね。

No.86521 - 2023/10/02(Mon) 07:11:25
どうやってこの形になりますか / 彩美
数学資料です。
画像の下の左側に
「四角形PBCR=△PBQ=△ABM」という箇所があります。

こちらですが、なぜ「四角形PBCR=△PBQ」が成り立つのかがわからないです。
教えていただけると大変助かります。

No.86504 - 2023/09/30(Sat) 14:21:53

Re: どうやってこの形になりますか / 彩美

数学資料です。
画像の下の左側に
「四角形PBCR=△PBQ=△ABM」という箇所があります。

こちらですが、なぜ「四角形PBCR=△PBQ」が成り立つのかがわからないです。
教えていただけると大変助かります。

No.86505 - 2023/09/30(Sat) 14:23:19

Re: どうやってこの形になりますか / IT
Rは、どういう点ですか?
問題文と図を載せられた方が早いと思います。

No.86506 - 2023/09/30(Sat) 15:38:37

Re: どうやってこの形になりますか / 彩美
申し訳ございません。
うまく図のファイルを添付できませんでした。

Rについて特に指定がありませんが、任意の点か、BCとPRが平行の可能性があります。

No.86507 - 2023/09/30(Sat) 15:55:42

Re: どうやってこの形になりますか / IT
同じような点線で描いてあることや、結果から、PNとBRが平行のつもりのようですね。

不親切な問題集ですね。

No.86509 - 2023/09/30(Sat) 20:51:00

Re: どうやってこの形になりますか / IT
PNとBRが平行ならば、△PBR=△NBRですね。
残りの△RBCは共通なので、四角形PBCR=△ABMです。

△ABM=△PBQの方は、分かるのですよね?

No.86510 - 2023/09/30(Sat) 21:24:41

Re: どうやってこの形になりますか / 彩美
ご回答ありがとうございます。
△ABM=△PBQの方は分かります。

△PBR=△NBRから、△NBC=四角形PBCRとなる。
よって四角形PBCRは△ABCの半分となり、△ABMと等しくなる。

まとめると、四角形PBCR=△PBQ=△ABMになることが理解できました。

No.86511 - 2023/10/01(Sun) 10:29:21
(No Subject) / 領域
実数aが、xの2次方程式x^2+(a+1)x+a^2+a-1=0が実数解を持つようなaの範囲を動くとき、解xの取りうる値の範囲を求めよ。
No.86498 - 2023/09/25(Mon) 15:52:24

Re: / X
方針を。

x^2+(a+1)x+a^2+a-1=0
をaについて(xについて、ではありません)の二次方程式
と見たときの解の判別式をDとすると
D≧0
これをxについての不等式として解きます。

No.86501 - 2023/09/26(Tue) 06:00:21
(No Subject) / 領域
原点と点(2,4)を通り、中心のx座標がaである円をCとする。Cと放物線y=x^2の共有点がちょうど2個あるようなaの値と、その時のCの通る領域を求めよ。

解説よろしくお願いします。

No.86497 - 2023/09/25(Mon) 15:48:43

Re: / X
前半)
条件から、Cの中心の座標を(a,b)と置くと
Cの半径について
a^2+b^2=(a-2)^2+(b-4)^2
これより
b=(5-a)/2
∴Cの中心の座標は(a,(5-a)/2)
このこととCが原点を通ることから
Cの方程式は
x^2-2ax+y^2-2・{(5-a)/2}y=0
整理して
x^2-2ax+y^2-(5-a)y=0 (A)
よって求める条件は(A)と
y=x^2 (B)
をx,yの連立方程式としたときの
実数解の組が
(x,y)=(0,0),(2,4)
のみとなる条件、ということになります。
ここで(A)に(B)を代入すると
x^2-2ax+x^4-(5-a)x^2=0
これより
x{x^3-(4-a)x-2a}=0
x{x(x^2-4)+a(x-2)}=0
x(x-2)(x^2+2x+a)=0
∴求める条件はxの二次方程式
x^2+2x+a=0 (C)

(i)x=0のみを実数解に持つ
(ii)x=2のみを実数解に持つ
(iii)x=0,2を解に持つ
(iv)実数解を持たない
のいずれかとなります。
(i)のとき
(C)より
a=0
このとき(C)より
x=0,-2∴不適。
(ii)のとき
(C)より
a=-8
このとき(C)より
x=2,-4∴不適。
(iii)のとき
(C)は
x^2-2x=0
と等価でなくてはならないので不適。
(iv)のとき
(C)の解の判別式をDとすると
D/4=1-a<0

以上から求めるaの値の範囲は
1<a (D)

後半)
(A)より
x^2-2ax+y^2-(5-a)y=0
(y-2x)a=-(x^2+y^2-5y) (A)'
ここで(A)'の右辺は(A)でa=1のときに当たるので
(A)'≠0
よって
(i)y-2x>0のとき
(D)(A)'より
-(x^2+y^2-5y)>y-2x
∴x^2+y^2-2x-4y<0
(ii)y-2x<0のとき
(D)(A)'より
-(x^2+y^2-5y)<y-2x
∴x^2+y^2-2x-4y>0

(i)(ii)をもう少し整理して、求める領域は
(x-1)^2+(y-2)^2<5,y>2x
又は
(x-1)^2+(y-2)^2>5,y<2x

No.86500 - 2023/09/25(Mon) 19:08:49

Re: / X
>>領域さんへ
No.86500の後半は、もう少し厳密な方針がありましたので
修正しました。再度ご覧下さい。

No.86503 - 2023/09/26(Tue) 19:13:49
シグマの計算 / ぴーたろ
Σの展開で2分の…になる部分の途中経過を教えてください。
よろしくお願いします!

No.86494 - 2023/09/25(Mon) 14:13:41

Re: シグマの計算 / らすかる
(2+1)^15 = Σ[k=0〜15]15Ck・2^(15-k)
から
(2+1)^15 = Σ[k=0〜14]15Ck・2^(15-k) + 15C15・2^(15-15)
= Σ[k=0〜14]15Ck・2^(15-k) + 1
Σ[k=0〜14]15Ck・2^(15-k) = (2+1)^15-1
Σ[k=0〜14]15Ck・2^(15-k-1) = {(2+1)^15-1}/2
1+Σ[k=0〜14]15Ck・2^(15-k-1) = 1+{(2+1)^15-1}/2

No.86495 - 2023/09/25(Mon) 15:03:36

Re: シグマの計算 / ぴーたろ
ありがとうございました!Σから二項定理に気づけよってことですね。
No.86496 - 2023/09/25(Mon) 15:43:44
積分 / Eラン大学生
【問題】曲線C:x=cost、y=sint、z=√3t (0≦t≦2π)
 とする。次の式を求めなさい。ただし、sは曲線の長さを表す。 ∫[C](xy+z)ds  ([C]は右下の添え字です。)

この問題なのですが、何を積分させようとしているのかが分かりません。曲線Cは一巻きのらせんになることは分かるのですが。ひとまず積分して、s=4πは出せました。
このあとを御教示頂けると幸いです。

No.86490 - 2023/09/25(Mon) 01:28:08

Re: 積分 / ast
> ひとまず積分して、s=4πは出せました。
まずそもそも問題の
> ただし、sは曲線の長さを表す。
はそういう意味ではなくて, 曲線上の各点 (x,y,z) を始点から C に沿ってその点へ辿った弧長 s をパラメータとして表す: e.g. (x,y,z)=(f(s),g(s),h(s)) (各座標 x,y,z は弧長 s の函数) という意味 (したがって "ds" は "この s を積分変数として積分する" という意味) です.

それで, あなたが計算したそれは, この "弧長に関する線積分" で書けば ∫[C]ds です (本問ではこれは問われてないのでその計算はそもそも無用です). これが, ひとつ前の質問のとおり ∫[C]ds=∫[0,2π](ds/dt)dt =4π と計算できたということであるのならば, 本問も
> 何を積分させようとしているのかが分かりません。
について説明すべきことはもうとくに残ってないと思います.

No.86491 - 2023/09/25(Mon) 09:32:08

Re: 積分 / GandB
> ひとまず積分して、s=4πは出せました。
 ???

> この問題なのですが、何を積分させようとしているのかが分かりません。
  ∫[C](xy+z)ds
は、被積分関数 xy + z を曲線C(円柱螺旋)に沿って線積分すると考えるのが普通。

※tで表示した被積分関数の表示ミスがあったので再投稿。

No.86493 - 2023/09/25(Mon) 11:23:57

Re: 積分 / Eラン大学生
御返答ありがとうございます。
線積分が分かっていなかったので、再勉強したいと思います。

No.86502 - 2023/09/26(Tue) 15:09:43
1次方程式 / ふゆ@中3生
1次方程式の問題です。
これも多分、中1ぐらいの問題だと思います。(正確じゃなくてすみません)

【問題】
マグネットを原価の100%増しで定価をつけた。売れすぎてサービスのため定価の250円引きで売ったがそれでも定価50%の利益がある。この商品の原価を求めなさい。

答えは500円です。
どうやって求めればよいのか教えていただけるとありがたいです。よろしくお願いします。

No.86480 - 2023/09/24(Sun) 21:23:37

Re: 1次方程式 / X
条件から
定価で売った場合の利益は原価と同じ。
一方、
定価の250円引きで売った場合の利益は
定価で売ったときの50%
よって
定価の250円引きで売った場合の利益は
原価の50%
後はよろしいですね。

No.86483 - 2023/09/24(Sun) 21:44:17

Re: 1次方程式 / ふゆ@中3生
解けました!
ありがとうございます!
計算間違いをしていました。
教えていただき、ありがとうございました。

No.86484 - 2023/09/24(Sun) 21:48:03
文字と式 / ふゆ@中3生
文字式の問題です。
中1ぐらいの問題です。

(1)a%の食塩水xgに食塩bgを混ぜてできる食塩水の濃度は何%か?

(2)5%の食塩水が100gある。この食塩水xgを取り出し、かわりに水をyg入れると、何%の食塩水になるか?

(3)ある中学校の去年の1年生は、男子がx人、女子がy人。今年は男子が10%増え、女子が5%減った。今年の1年生は何人か?

これらの3つがわかりません。
答えは、
(1)ax+100b/x+b
(2)500ー5x/100ーx+y
(3)11x/10+19y/20
です。どうしてこの答えになるのか、教えていただきたいです。

お手数をおかけしますが、よろしくお願いします。

No.86479 - 2023/09/24(Sun) 20:47:57

Re: 文字と式 / あ
a%の食塩水xgは食塩と水が何gずつか分かりますか?
No.86481 - 2023/09/24(Sun) 21:25:45

Re: 文字と式 / ふゆ@中3生
食塩の質量はax/100と出てきたのですが…あっているかわかりません。
No.86482 - 2023/09/24(Sun) 21:44:14
教えてください。 / 前進
お久しぶりです。この問題いまいち理解ができないです。
4/9 4/9 1/9になる理由がわかりません。
よろしくお願い致します

No.86475 - 2023/09/24(Sun) 19:13:54

Re: 教えてください。 / 前進
計算過程になります
No.86476 - 2023/09/24(Sun) 19:18:24

Re: 教えてください。 / 前進
自分なりに解決致しましたので、closeさせていただきます。
申し訳ございませんでした。またよろしくお願い致します

No.86477 - 2023/09/24(Sun) 20:34:58

Re: 教えてください。 / GandB
> 自分なりに解決致しましたので、closeさせていただきます。
だからいいと思うのだが、アップした計算過程の図からどのように解決したのか気になる。

> 4/9 4/9 1/9になる理由がわかりません。
 5以上の目を○、それ以外の目を●で表すと、サイコロを2回振ったときの目の出方のパターンとその確率は

  X = 0 ●●  (2/3)(2/3) = 4/9
  X = 1 ●○  (2/3)(1/3) = 2/9
  X = 1 ○●  (1/3)(2/3) = 2/9
  X = 2 ○○  (1/3)(1/3) = 1/9

 もう見てないだろうけどね(笑)。

No.86485 - 2023/09/24(Sun) 21:55:30

Re: 教えてください。 / 前進
今拝見致しました。数学Aの独立が弱いのかもしれませんが、ありがとうございました。調べても載っていなかったので・・・
解決方法ですが、私の図の⚪︎の4/36=1/9で残りの確率変数0,1に8/9を等分しました。4/9ずつにしました。

No.86486 - 2023/09/25(Mon) 00:24:55

Re: 教えてください。 / 前進
和が5以上と勘違いしているところもありました。
それでも確率変数は全ての事象を書き出す必要があると習い、混乱していました。
非常に助かりました。また質問する際はよろしくお願い致します

No.86487 - 2023/09/25(Mon) 00:31:13

Re: 教えてください。 / 前進
一人で考えるには限界がありますので、ありがとうございました
No.86488 - 2023/09/25(Mon) 00:32:22
作図問題 / ふゆ@中3生
中1程度の作図問題でわからない問題が出てきました。
教えていただけるとありがたいです。

ちなみに、この問題は図2に作図をすればいいのでしょうか?

よろしくお願いします。

No.86472 - 2023/09/24(Sun) 10:57:37

Re: 作図問題 / X
>>この問題は図2に作図をすればいいのでしょうか?
その通りです。
それで作図方法ですが、以下のようになります。

まず、線分ABの垂直二等分線(Lとします)を作図します。
Lと線分ABの交点がCです。
(つまり、点Cは線分ABの中点)

次にCから辺OXへ下す垂線(mとします)を作図します。
方法は
(1)点Cを中心として線分OXに2点で交わる円弧を作図。
(2)(1)の円弧と線分OXの二つの交点を結ぶ線分の
垂直二等分線を作図。

mの線分OXへの足をHとして、点Cを中心とした
半径CHの円が求める円Cです。

No.86474 - 2023/09/24(Sun) 18:50:07

Re: 作図問題 / ふゆ@中3生
説明していただき、ありがとうございます!

教えていただいたように作図してみたら、書くことができました!
ありがとうございます!

No.86478 - 2023/09/24(Sun) 20:36:20
積分 / Eラン大学生
【質問】空間内の曲線の長さの求め方について、

ある曲線がx=f(t)、y=g(t)、z=h(t) (a≦t≦b)
で与えられているとき、

この長さは、∫[a≦t≦b]{√f^2(t)+g^2(t)+h^2(t)}dt
という式で合っていますか?

ルートは{ }全部にかかります。

No.86470 - 2023/09/24(Sun) 00:34:49

Re: 積分 / らすかる
合っていません。
√の中身を(f'(t))^2+(g'(t))^2+(h'(t))^2に修正すれば正しくなります。

No.86471 - 2023/09/24(Sun) 02:12:28

Re: 積分 / Eラン大学生
ありがとうございます。
No.86489 - 2023/09/25(Mon) 01:16:14
楕円柱の表面積 / 清田育宏
楕円柱の表面積(円柱において、底面が楕円のもの)はどのように表現されますでしょうか?
調べても出てきませんので、こちらに書き込み致しました。
どなたかご存知の方、ご教示をお願いします。

No.86465 - 2023/09/23(Sat) 21:07:17

Re: 楕円柱の表面積 / 清田育宏
もちろん、楕円の面積がπabであることは把握しています。ただ、楕円柱の側面積がどうなるのか、わかりません。
No.86466 - 2023/09/23(Sat) 21:09:37

Re: 楕円柱の表面積 / らすかる
側面積は楕円の周の長さ×高さなので、周の長さを調べればよいと思います。ただし、楕円積分になりますので値を代入すれば簡単に求まるような、初等関数で表された公式はないでしょう。
No.86468 - 2023/09/23(Sat) 22:32:40

Re: 楕円柱の表面積 / GandB
「楕円の周の長さ」を求めることの厄介さは

  https://manabitimes.jp/math/1092

を参照。

No.86469 - 2023/09/23(Sat) 23:00:33

Re: 楕円柱の表面積 / 清田育宏
らすかる様、GandB様

円柱と楕円柱との表面積の比を定式化しようと考えていたのですが、難しそうですね・・・

ご回答ありがとうございました。

No.86473 - 2023/09/24(Sun) 12:00:20
(No Subject) / 太
大学受験用です。設問番号だけ消えてしまっているのですが、(1)〜(4)です。(2)〜(4)までの方針と記述解答の手順を聞きたいです。
No.86463 - 2023/09/22(Fri) 15:19:05

Re: / X
(2)
条件から
a[n]=(1/4)a[n-1]+(1/3)b[n-1] (A)
b[n]=(1/2)a[n-1]+(2/3)b[n-1] (B)
(A)×2-(B)より
b[n]=2a[n] (C)

(3)
(A)(C)から
a[n]=(1/4)a[n-1]+(2/3)a[n-1]
∴a[n]=(11/12)a[n-1]
となるので
a[n]=a[2](11/12)^(n-2)
これに(1)の結果を代入します。

(4)
求める確率をp[n],n回目にCからカードを引く確率をc[n]
とすると、条件から
p[n]=(1/4)a[n]+(1/3)b[n]+(2/3)c[n] (D)
(D)にa[n],b[n],c[n]を計算した結果を代入していきます。
a[n]は(3)の結果を使います。
b[n]は(3)の過程と同様な方針で求めます。

問題はc[n]についてですが、条件から
c[n]=(2/3)c[n-1]+(1/4)a[n-1] (E)
ですので、これに(3)の結果を使った上で、
{c[n]}についての漸化式として解いていきます。

No.86464 - 2023/09/22(Fri) 15:47:43
(No Subject) / 太
主に(4)がわからず、(3)までの誘導を利用すると思ったので纏めて質問させて頂きました。申し訳ないです。
No.86458 - 2023/09/21(Thu) 22:19:38

Re: / 太
引用返信できてませんでした。申し訳ないです。
No.86459 - 2023/09/21(Thu) 22:20:20
(No Subject) / 太
大学受験生です。
よろしくお願いいたします。

No.86455 - 2023/09/21(Thu) 19:26:04

Re: / IT
(1) も自力で出来ませんか? 
No.86457 - 2023/09/21(Thu) 20:17:23

Re: / X
横から失礼します。

(4)
(略解)
極限を求める項をg(n)と置くと
logg(n)={1/S(1,n)}Σ[k=1〜n](1/k)logk
={1/S(1,n)}Σ[k=1〜n]f(k)
これに(2)の結果を使うと
logg(n)={2/(logn)^2}Σ[k=1〜n]f(k)
ここで(3)の結果により
{2/(logn)^2}{f(1)+f(2)+S(3,n+1)}≦logg(n)≦{2/(logn)^2}{f(1)+f(2)+S(3,n)+f(3)}
∴はさみうちの原理により
lim[n→∞]logg(n)=1
となるので
(与式)=lim[n→∞]g(n)=e

No.86460 - 2023/09/21(Thu) 22:22:05

Re: / 太
ありがとうございます!
No.86462 - 2023/09/22(Fri) 15:16:33
(No Subject) / 太
大学受験生です。
答えがなくて申し訳ないです。
あと3問程度お聞きする予定です。よろしくお願いいたします。

No.86454 - 2023/09/21(Thu) 19:25:17

Re: / X
(1)
Cの方程式にPの座標を代入して
(rsinθ)^2=4(1-rcosθ)
これより
(1-cosθ)(1+cosθ)r^2+(4cosθ)r-4=0
{(1-cosθ)r+2}{(1+cosθ)r-2}=0
r>0より
r=2/(1+cosθ)

(2)
条件から
∠P'OQ'=∠POQ=2θ
一方、条件と(1)の結果により
OP'=1/OP
=1/r=(1+cosθ)/2
OQ'=1/OQ
=1/r=(1+cosθ)/2
以上から
S=(1/2)OP'・OQ'sin∠P'OQ'
=(1/8)sin2θ(1+cosθ)^2

(3)
これは方針だけ。

(2)の結果から
S=(1/2)sin2θ(cos2θ)^4
=(1/2)sin2θ{1-(sin2θ)^2}^2 (A)
ここでsin2θ=tと置くと
0≦θ<π/2
より
0≦t≦1 (B)
で(A)は
S=(1/2)t(1-t^2)^2
後はSをtで微分して(B)の範囲で
Sの増減表を書きます。

No.86456 - 2023/09/21(Thu) 20:00:30

Re: / 太
解けました!ありがとうございます!
No.86461 - 2023/09/22(Fri) 15:15:12
最大値 / ゆり
高校2年生です。
平面x-2y+4z=0、球面x^2+y^2+z^2=14の交線上の点(x,y,z)について、x+y+zの最大値を求めよ。
という問題を教えて下さい。よろしくお願いします。

No.86451 - 2023/09/21(Thu) 18:23:45

Re: 最大値 / X
方針を。

x-2y+4z=0 (A)
x^2+y^2+z^2=14 (B)
とします。
x+y+z=k (C)
と置き、(A)(B)をy,zの連立方程式として解くと
(y,z)=(…,…) (C) (つまり、y,zをk,xの式で表します。)
(C)を(B)に代入して整理をし、得られた等式を
xの二次方程式と見たときの
解の判別式をDとすると、条件から
D≧0 (D)
(D)をkの不等式として解きます。

No.86452 - 2023/09/21(Thu) 18:34:29

Re: 最大値 / ゆり
ご丁寧な解説、どうもありがとうございました!
No.86453 - 2023/09/21(Thu) 18:41:28
(No Subject) / ゴンタ
こちらの問題について、xにyを代入して、(定積分の箇所)=0として、f(y)=2y^2+y+5/3 とできないのは何故でしょうか?よろしくお願いします。
No.86446 - 2023/09/19(Tue) 09:15:37

Re: / ゴンタ
すみません、問題の画像を貼り忘れていました。
No.86447 - 2023/09/19(Tue) 09:16:18

Re: / けんけんぱ
xとyはそれぞれ独立した変数です。
一時的にx=yとなる場合もあるでしょうが、常にx=yとなっているわけではありません。
積分の式では、積分区間は-1から1まで、つまりyは-1から1までの値しかとりません。
対して、xはそういう制限はなく、いくつでも値は取れます。
そういう違いのあるxとyをイコールにするのは無理があると思いませんか?

No.86448 - 2023/09/19(Tue) 12:24:42

Re: / ast
類題として, 画像の問を離散化した
「n の整式 f(n) が恒等式
   f(n) + Σ_[k=-1,0,1] (n-k)^2 f(k) = 2n^2 + n + 5/3
 を満たすとき f(n) を求めよ.」
を考えてみてはどうでしょうか.
もしこれについても「n に k を代入して (シグマの箇所)=0 として」としようと考えるのであれば, Σ-記法を使わずに "+" 記号だけで書けば, 恒等式の実態は
 "f(n) + (n+1)^2 f(-1)+n^2 f(0)+ (n-1)^2 f(1) = 2n^2 + n + 5/3"
なので, この場合そもそも「n に k を代入する」っていうのが意味不明だとわかるはずです.
まあでも無理矢理に, たとえば「"n=-1" または "n=0" または "n=1" のときを考える」という意味で "k を代入する" と言っているのだと解釈してもいいかもしれませんが, そこから何が分かるのか, 少なくとも「3 つある (n-k)^2 f(k) の形の項のうち k=n となる一つの項だけは 0 と分かるが残りの二つはそうではないので "(シグマの箇所)=0" と結論付けることは望めない」ということは言えます.

これと同様の意味で, もとの質問でも
> xにyを代入して、(定積分の箇所)=0として
はダメ, ということになります.
# これも上と同様に "-1≤x≤1 のときには, y=x となる一瞬だけ (x-y)^2 f(y) = 0 になる" というだけは言えるが
# "それ以外の -1≤y≤1 に対する (x-y)^2 f(y)" は 0 かどうかわからないので, "(定積分)=0" も結論できない.

No.86449 - 2023/09/19(Tue) 19:57:24
(No Subject) / 存在条件
放物線y=x^2上にx座標がt,t+1である2点P,Qをとる。
tが-1≦t≦0を満たしながら動くとき、線分PQが通る領域を求めよ。

解説お願いします。

No.86438 - 2023/09/16(Sat) 19:43:30

Re: / X
方針を。

条件から、直線PQの方程式は
y=(2t+1)(x-t)+t^2
これより
y=(2t+1)x-t^2-t
t^2-(2x-1)t+y-x=0 (A)
∴求める条件は
tの二次方程式(A)が
-1≦t≦0 (B)
なる実数解を少なくとも一つ持つ
条件ということになります。

そこで
f(t)=t^2-(2x-1)t+y-x (C)
と置き、横軸にt、縦軸にf(t)
を取った(C)のグラフが
t軸と(B)の範囲で少なくとも一つ
交点を持つ条件を求めます。

ということで
(C)のグラフの軸と(B)との位置関係
について3つに場合分けをします。

No.86439 - 2023/09/16(Sat) 20:04:29

Re: / 存在条件
何故(B)となるのでしょうか。
No.86440 - 2023/09/16(Sat) 20:41:56

Re: / X
ごめんなさい。(B)が誤っていましたので
No.86440を直接修正しました。
再度ご覧下さい。

No.86441 - 2023/09/17(Sun) 04:08:41

Re: / 黄桃
Xさん:
問題は線分PQとなっているので、もう少し条件が必要です。(B)だけでは、直線y=x全体も求める領域に含まれてしまいます(t=0, y=x は(A)も(B)も満たす)。
線分PQなので、(B)に加えて t≦x≦t+1 (B')も必要です。

xの正負に応じて(B)かつ(B')の範囲を決定し、その後にf(t)のグラフの対称軸の位置でさらに場合分けすることになると思います。

マルチポストなので、詳細は控えておきます。

No.86442 - 2023/09/17(Sun) 14:48:06

Re: / X
>>黄桃さんへ
ご指摘ありがとうございます。

>>存在条件さんへ
ごめんなさい。黄桃さんの仰る通り、線分PQの条件から
t≦x≦t+1
つまり
x-1≦t≦x (B)'
が必要になります。

No.86443 - 2023/09/17(Sun) 17:24:50

Re: / X
もう一点訂正を。
(A)(C)が間違っていましたので、No.86439を
直接修正しました。
再度ご覧下さい。

No.86444 - 2023/09/17(Sun) 17:50:10

Re: / X
>>存在条件さんへ
ごめんなさい。
No.86444のアップした後に改めてNo.86439の方針の続きを
計算してみたところ、かなり計算が煩雑になることが
分かりました。

もうかなり時間が経っていますが、(B)'を条件に加えた上で
No.86439の方針の続きで、ある程度煩雑さを減らしたものを
アップしておきます。

(B)、(B)'のtの値の幅が共に1であることに注意すると
(B),(B)'から
(I)-1≦x-1≦0、つまり0≦x≦1
(II)-1≦x≦0
の場合分けが必要になり、この(I)(II)それぞれに対し、
f(t)のグラフの対称軸との位置関係から
更に3通りの場合分けが必要になります。
(つまり、まともに計算するなら合計6通りの場合分けが必要)

但し、直線PQの方程式が
y=(2t+1)x-t^2-t
もう少し変形して
y=2(t+1/2)x-(t+1/2)^2+1/4
となることと
-1≦t≦0
から、求める領域はy軸に関して対称になります
(詳細は省きます)ので、実際は(I)の場合の3通りの場合分け
のみ計算し、得られた領域(Eとします)と、Eをy軸に関し、
対称移動させた領域(E'とします)を合わせた領域
E∪E'
を求める領域とすれば良いことになります。

ここでf(t)のグラフの対称軸の方程式が
t=x-1/2 (D)
であることに注意しておきます。
又(A)の解の判別式をとしておきます。

ということで
(I)の場合について。
tの値の範囲は
x-1≦t≦0
ですので
(i)x-1/2<x-1のとき
これは-1/2<-1となるので不適。

(ii)x-1≦x-1/2≦0、つまり0≦x≦1/2のとき
求める条件は
{f(x-1)=(x-1)^2-(2x-1)(x-1)+y-x≧0 (F)
又は
f(0)=y-x≧0 (G)}
かつ
D=(2x-1)^2-4(y-x)≧0 (H)
(F)より
(x^2-2x+1)-(2x^2-3x+1)+y-x≧0
∴y≧x^2
(G)より
y≧x
ここで
{(x,y)|0≦x≦1/2,y≧x^2}⊃{(x,y)|0≦x≦1/2,y≧x}
ですので、(G)又は(H)は
y≧x^2
にまとめることができます。
更に(H)より
y≦x^2+1/4

(iii)0<x-1/2、つまり1/2<x≦1のとき
求める条件は
f(x-1)=(x-1)^2-(2x-1)(x-1)+y-x≧0 (I)
f(0)=y-x≦0 (J)
(I)より
y≧x^2
(J)より
y≦x

以上から
E={(x,y)|0≦x≦1/2,x^2≦y≦x^2+1/4}
∪{(x,y)|1/2<x≦1,x^2≦y≦x}

E'={(x,y)|-1/2≦x≦0,x^2≦y≦x^2+1/4}
∪{(x,y)|-1≦x<-1/2,x^2≦y≦-x}
となるので求める領域は
E∪E'={(x,y)|-1/2≦x≦1/2,x^2≦y≦x^2+1/4}
∪{(x,y)|1/2<x≦1,x^2≦y≦x}
∪{(x,y)|-1≦x<-1/2,x^2≦y≦-x}
となります。

No.86450 - 2023/09/20(Wed) 16:45:34
不等式 / フック
(2)の解き方がわかりません
答えはk=√2です

No.86432 - 2023/09/16(Sat) 10:48:59

Re: 不等式 / IT
相加平均≧相乗平均 は既習ですか?
No.86433 - 2023/09/16(Sat) 11:29:04

Re: 不等式 / IT
a+b > 0 なので
(√a+√b)/√(a+b) ≦k と変形できますから
(√a+√b)/√(a+b) の最大値を求めることに帰着します。
2乗して整理してみてください。

No.86434 - 2023/09/16(Sat) 11:32:01

Re: 不等式 / フック
有難うございます
No.86435 - 2023/09/16(Sat) 11:55:08
全22457件 [ ページ : << 1 ... 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 ... 1123 >> ]