[ 掲示板に戻る ]

過去ログ閲覧モード

(No Subject) / バカ
よろしくお願いします。。。。
No.71127 - 2020/11/24(Tue) 00:12:32
(No Subject) / バカ
解いてください。。。。。。
No.71126 - 2020/11/24(Tue) 00:11:50
複素数 / Y
z=1+√3i
のときRez , Imz,zバー,|z|,argzを求める問題なのですが
Rez=1
Imz=-√3
zバー=1-√3i
|z|=1-√3i
で合っていますでしょうか?
また、argの求め方を教えてほしいです
argzの範囲は[0,2π)です
よろしくお願いします

No.71125 - 2020/11/24(Tue) 00:00:05

Re: 複素数 / らすかる
Re(z)=1 これはOK
Im(z)=√3 Imはiの係数です
z~=1-(√3)i これはOK
|z|=√(1^2+(√3)^2)=2 |a+bi|=√(a^2+b^2)です
arg(z)=π/3 arg(a+bi)はa+bi=|a+bi|(cosθ+isinθ)を満たすθです

No.71128 - 2020/11/24(Tue) 01:43:16
同相について / 鹿
2次特殊ユニタリ群SU(2)と3次元球面が同相、というのが授業で出てきたのですが、どうして同相といえるのかが分かりません。
よろしくお願いいたします。

No.71118 - 2020/11/23(Mon) 20:24:31

Re: 同相について / 鹿
すみません、同相ではなくSU(2)≈S3と表記されていました。
No.71119 - 2020/11/23(Mon) 20:39:36

Re: 同相について / 関数電卓
私はこの内容を全く理解できませんが,
 「2次特殊ユニタリ群SU(2)と3次元球面が同相」
で検索すると,yahoo知恵袋がいくつかヒットします。
ひとりの人が名前を変えていくつも質問しているとは思えないので,どこかの大学の課題なのでしょうね?

No.71121 - 2020/11/23(Mon) 20:48:27

Re: 同相について / 鹿
ありがとうございます!
検索してみます。

No.71122 - 2020/11/23(Mon) 21:58:17

Re: 同相について / 黄桃
SU(2)の定義(2x2複素ユニタリー行列で行列式が1のもの全体の集合)にしたがって計算するだけです。計算結果がS^3の定義式になれば証明終わりです。

わからなければ線型代数のノートや教科書で勉強しましょう。

No.71123 - 2020/11/23(Mon) 22:06:42
(No Subject) / 綿あめ
座標平面上の3点A(0,1),B(0,-1),P(x,y)とする
(1)x<0の時直線APの傾きと直線BPの傾きをxとyを用いて表せ

(2)x<0の時tanαをx,yを用いて表せ

(3)0<α<π/2を満たす定数とする

x<0の範囲で角度APB=αである点Pの軌跡を求めよ

(3)の解説
角度APB=αより
−2x/(x^2y^2+−1)=tanα
x^2y^2+−1/-2x=1/tanα
x^2+(y^2)−1=-2x/tanα
つまりx^2+y^2+(2x/tanα)=1
よって(x+(1/tanα))^2+y^2=1/(sinα)^2

から中心が(-1/tanα,0)半径1/sinαの円のx<0の部分

解説は理解できるのですがなぜこれ↓だとうまくいかないのかわかりません…

−2x/(x^2y^2+−1)=tanα


角度APBは三角形APBの内角だから0<α<180
この時0<α<2/πの時tanα>0
π/2<α<πの時tanα<0
(αが三角形の内角じゃなければtanα>0になるようなαって他にもπ<α<3π/2の時も条件を満たすけど【αは三角形の内角という条件】なら0<α<π/2しかないと思うんですけど…)


よって0<α<2/πの時tanα=−2x/(x^2y^2+−1)>0
x<0よりー2x>0
よって分母のx^2+y^2+−1>0になる条件を求めればよい
つまりx^2+y^2>1
つまり中心が(0,0),半径が1の円で外部にありかつx<0を満たす部分…

何がいけないんでしょうか?なんでうまくいかないかの理由が分かりません。解説よろしくお願いします

No.71114 - 2020/11/23(Mon) 09:03:38

Re: / IT
> よって0<α<2/πの時tanα=−2x/(x^2y^2+−1)>0
細かくは見ていませんが、なぜ、この後 α が消えたのですか?

No.71115 - 2020/11/23(Mon) 09:34:13

Re: / 綿あめ
これってtanα>0を満たす時のx,yは座標平面上のどこにあるかを求めろ
ってことでしょ。
ここでtanαはx,yを用いて−2x/(x^2+y^2-1)と表せるから
tanα>0になる。
→そのためには
tanα=−2x/(x^2+y^2-1)だから
tanα>0は−2x/(x^2+y^2-1)>0と同値
じゃないの?

No.71116 - 2020/11/23(Mon) 10:19:27

Re: / らすかる
> これってtanα>0を満たす時のx,yは座標平面上のどこにあるかを求めろ
> ってことでしょ。


違います。
∠APB=αである点Pの軌跡を求めるのですから、
定数αに対して-2x/(x^2+y^2-1)=tanαを満たすx,yが座標平面上のどこにあるかを求めろ
ということです。

No.71117 - 2020/11/23(Mon) 10:41:18
代数 / meow
(1)がよくわかりません.
a^13=aだと思うのですが
a^(-10)は何になりますか?
よろしくお願いいたします.

No.71110 - 2020/11/23(Mon) 07:19:58

Re: 代数 / IT
a^6,a^10 は、どうなりますか?
No.71111 - 2020/11/23(Mon) 07:25:12

Re: 代数 / meow
> a^6,a^10 は、どうなりますか?

ITさんありがとうございます.
a^6はe
a^10はa^4になると思います.
iが負になったときどうすれば良いのでしょうか...

No.71112 - 2020/11/23(Mon) 07:41:42

Re: 代数 / IT
a^(-1)、a^(-2) などが、何を意味するか定義が、テキストに書いてあるはずです。

テキストをよく読まれることをお勧めします。

No.71113 - 2020/11/23(Mon) 07:55:42
(No Subject) / ポッチャ魔
iってこんな感じで絶対値から出すとき消せるのですか?
No.71100 - 2020/11/22(Sun) 21:23:33

Re: / IT
消すということではなくて、
任意の複素数 a,b について|ab|=|a||b| であり|i|=1だからです。

No.71104 - 2020/11/22(Sun) 21:55:40

Re: / ポッチャ魔
なるほど!ありがとうございます。
No.71107 - 2020/11/22(Sun) 23:24:21
重心の証明問題 / S
三角形ABCの内部に点Pをとる。三角形PAB、三角形PBC、三角形PCAの面積が等しいとき、点Pは三角形ABCの重心であることを示せ。重心習ったばかりでよく分かってないので助けてください。
No.71099 - 2020/11/22(Sun) 20:57:50

Re: 重心の証明問題 / IT
まずは、図を描いて載せてみてください。
APがBCと交わる点をQ
BPがCAと交わる点をR
CPがABと交わる点をS
としてAS,BR,CSを線分で結んでください。

何を示せばPが重心であると言えますか?

No.71101 - 2020/11/22(Sun) 21:40:29
数学 / yhvd
A〜Eまでの中から正しいものを1つ選べ。
X、Y、Zは1から9までの整数のいずれかで、
X>Y>Zである。
[問い]Yはいくつか。
ア X=4Y
イ Z=1/2Y

A アだけでわかるが、イだけではわからない
B イだけでわかるが、アだけではわからない
C アとイの両方でわかるが、片方だけではわからない
D アだけでも、イだけでもわかる
E アとイの両方があってもわからない

上記の問題がわかりません。
宜しくお願いします。

No.71095 - 2020/11/22(Sun) 17:51:03

Re: 数学 / ヨッシー
ア X=4Y
から言えるのは
(X, Y)=(4,1), (8,2) の2通りの可能性
イ Z=1/2Y
から言えるのは
(Y,Z)=(2,1)(4,2)(6,3)(8,4) の4通りの可能性 です。
よって、
A,B,D は正しくありません。

アとイを組み合わせたとき、
Yが1通りに決まるか決まらないか。
決まるならC,決まらないならEです。

No.71097 - 2020/11/22(Sun) 20:30:57
数学 / yhvd
A〜Eまでの中から正しいものを1つ選べ。
X、Y、Zの平均年齢は70歳である。
[問い]Xは何歳か。
ア XとYの平均年齢は70歳である
イ YとZの平均年齢は60歳である

A アだけでわかるが、イだけではわからない
B イだけでわかるが、アだけではわからない
C アとイの両方でわかるが、片方だけではわからない
D アだけでも、イだけでもわかる
E アとイの両方があってもわからない

上記の問題がわかりません。
宜しくお願いします。

No.71092 - 2020/11/22(Sun) 17:35:34

Re: 数学 / ヨッシー
ア XとYの平均年齢は70歳である
ということは、
 (X, Y)=(50,90), (51,89), (52, 88) ・・・・
などです。この状況で X が何歳か分かるでしょうか?

イ YとZの平均年齢は60歳である
 (Y, Z)=(50,70), (51,69), (52,68) ・・・・
などですが、それぞれについて、X が何歳か求めましょう。

No.71096 - 2020/11/22(Sun) 20:23:28

Re: 数学 / yhvd
アだけのとき
X=50,51,52,・・・,89,90
イだけのとき
X=90
と分かることから
答えはDのアだけでもイだけでもわかる
ですか?

No.71102 - 2020/11/22(Sun) 21:44:12

Re: 数学 / yhvd
アだけで判定するときは、上記のように
X=50,51,52,・・・,89,90
となり、答えが1つに定まらないので

答えはBのイだけでわかるが、アだけではわからない

ですかね?

No.71103 - 2020/11/22(Sun) 21:49:06

Re: 数学 / ヨッシー
BとDの違いは、
 アだけでわかるかどうか
です。
わかるならD、わからないならBです。

No.71109 - 2020/11/23(Mon) 06:59:43
(No Subject) / み
コインの表の出る確率が1/2で、30回のうち8回以下または22回以上表になる確率はどうやって求めますか?
No.71091 - 2020/11/22(Sun) 16:02:02

Re: / らすかる
k回表になる確率は30Ck/2^30であり
(k回表になる確率)=(k回裏になる確率)=(30-k回表になる確率)
ですから、
(8回以下または22回以上表になる確率)=2Σ[k=0〜8]30Ck/2^30=8656937/536870912
となります。

No.71093 - 2020/11/22(Sun) 17:49:47
数学 / eygdh
A〜Eまでの中から正しいものを1つ選べ。
500gの小麦粉を3つの袋X、Y、Zに分けて入れた。
[問い]最も重いのはどれか(ただし袋の重さは考えないものとする)。

ア XはZより250g思い
イ XはZの6倍の重さである

A アだけでわかるが、イだけではわからない
B イだけでわかるが、アだけではわからない
C アとイの両方でわかるが、片方だけではわからない
D アだけでも、イだけでもわかる
E アとイの両方があってもわからない

上記の問題がわかりません。
宜しくお願いします。

No.71090 - 2020/11/22(Sun) 15:13:30

Re: 数学 / らすかる
小麦粉をまったく入れない袋があっても良いのですか?
No.71094 - 2020/11/22(Sun) 17:50:56

Re: 数学 / yhvd
3つの袋全てに小麦粉はいれます!
No.71098 - 2020/11/22(Sun) 20:47:24

Re: 数学 / らすかる
それならば、
アの条件があれば少なくともXが250gより重いことがわかり、
250gより重ければ500gの半分より多く占めていて
Xが最も重いとわかります。
イの条件だけの場合は、例えばX=6g、Y=493g、Z=1gだったり
X=420g、Y=10g、Z=70gのような可能性があり、
最も重いものが定まりません。
従って答えはAです。

No.71106 - 2020/11/22(Sun) 22:48:18
(No Subject) / 110
Σ[k=0,∞]∫[0→1] x・(x-1)^k dx を求めよ.

解き方を教えて下さい.
お願いします.

No.71087 - 2020/11/22(Sun) 13:40:35

Re: / らすかる
∫[0〜1]x(x-1)^k dx
=∫[-1〜0](t+1)t^k dt (t=x-1とおいた)
=∫[-1〜0]t^(k+1)+t^k dt
=[t^(k+2)/(k+2)+t^(k+1)/(k+1)][-1〜0]
=-(-1)^(k+2)/(k+2)-(-1)^(k+1)/(k+1)
=-(-1)^k/(k+2)+(-1)^k/(k+1)
=(-1)^k{1/(k+1)-1/(k+2)}
なので
(与式)=Σ[k=0〜∞](-1)^k{1/(k+1)-1/(k+2)}
=(1/1-1/2)-(1/2-1/3)+(1/3-1/4)-(1/4-1/5)+…
=2(1-1/2+1/3-1/4+…)-1
=2log2-1

# 1-1/2+1/3-1/4+…=log2の証明が必要ならこちら → https://mathtrain.jp/alternate

No.71089 - 2020/11/22(Sun) 14:49:38
よろしくお願いします / 高校数学
F=sinA・sinB ・cosC ( A+B+C=180°)
上記のような三角関数の最大最小はどうやって処理すればいいのか教えて欲しいです。基本的な方針が知りたいです。和積や積和を使うと思うのですが、どこを目的にして使っているのかを教えて欲しいです。問題集で一問解けるようになっても、少し形が違うと分からなくなってしまいました。

No.71086 - 2020/11/22(Sun) 11:49:18

Re: よろしくお願いします / 関数電卓
A,B,C は三角形の内角 (0<A,B,C<180°) と考えて良いのですね?

私は,式の変形でうまくいかなかったため偏微分でねじ伏せたところ,
 最大値は なし
 最小値は −1/8 (A,B,C のひとつが 120°,他の2つが 30°,30°)
となりました。
問題の出典は何ですか? 問題集ですか?

No.71124 - 2020/11/23(Mon) 23:34:28

Re: よろしくお願いします / mathmouth
段階を踏んで考えればただの二次関数の最大・最小問題です.
No.71131 - 2020/11/24(Tue) 05:51:40

Re: よろしくお願いします / 高校数学
お二人の方!本当にありがとうございます。元の問題は今年の一橋大の問題です。
半径1の円周上に3点ABCがある。内積AB・ACの最大最小を求めよ。
自分は正弦定理で角だけの式に落とし込んだのですが、途中で手が止まってしまいました。解説は解答方針が違って参考にならなかったので質問しました。マスマウスさんの答えは正解です。
答えていただき本当にありがとうございました。

No.71174 - 2020/11/27(Fri) 03:18:14
数学 / menhe
ある商品について3つの商店P、Q、Rの販売価格を比較したところ、高い方からP、Q、Rの順であり、以下のことが分かった。
ア 3つの商店の販売価格の平均は282円だった
イ 商店Rの販売価格は250円だった

このとき、商店Pの販売価格は最も安くて何円か。

上記の問題が分かりません。
分かる方宜しくお願いします。

No.71083 - 2020/11/22(Sun) 10:10:52

Re: 数学 / ヨッシー
PQRの合計は 282×3=846(円)
PとQの合計は 846−250=596(円)

値段の順が
同額を認めない場合
 (P,Q)=(313,283),(312,284),・・・(294,292)
同額を認める場合
 (P,Q)=(314,282),(313,283),・・・(293,293)
の範囲の金額が考えられます。
前者だと 294円、後者だと 293円

No.71084 - 2020/11/22(Sun) 10:18:38

Re: 数学 / menhe
ありがとうございます!
No.71088 - 2020/11/22(Sun) 14:41:27
代数 / meow
この問題についてなのですが,どのように解けば良いのでしょうか.
(1)は,
Hの任意のA,B∈Hに対して,A・BはHで閉じていそうですし,
A^(-1)もHで閉じていそうです.

(2)
逆元が明らかにHで閉じていなそうです.

という感じだと思ったのですが,そもそもこの問題の演算は積で考えて良いのですか?
(1)のA・Bは,行列の積で考えていますが,和でなくてよいのですか?
よろしくお願いいたします.

No.71080 - 2020/11/22(Sun) 05:48:49

Re: 代数 / IT
その問題が掲載されてるテキストあるいは講義(ノート)に
n次一般線形群:GL(n,R)の説明が書いてあるのでは?
(その中に対象となる演算が何か書いてあるはずです)

No.71082 - 2020/11/22(Sun) 07:54:30

Re: 代数 / meow
正則な行列全体が行列の積に関してなす群のことを一般線形群とかかれておりました.
ありがとうございます.

No.71108 - 2020/11/23(Mon) 03:35:42
平面の分割 / URHANL
n を正の整数とします。
平面に 2*n 個の点があります。
但し、どの 3 点も同一直線上にはありません。

この平面に1本の直線を引くことで平面の領域を2分割することを考えます。2分割されたどちらの領域にも n 個の点が含まれるように直線を引くことが常にできることを、初等的に証明できるものなのでしょうか。

あるいは反例を提示できるものなのでしょうか。

No.71076 - 2020/11/21(Sat) 22:57:12

Re: 平面の分割 / IT
2点を通る直線は有限個なので、それらのいずれとも平行でない直線Lが存在する。

LをLに平行に移動して行けばよいのでは?

「どの 3 点も同一直線上にはありません」という条件は必要ないような気がしますが、何かに書いてある問題でしょうか?

No.71078 - 2020/11/21(Sat) 23:59:30

Re: 平面の分割 / URHANL
ITさん。
ご教示をまことに有り難うございます。

おっしゃる説明は明確だと思いました。お陰さまでもやもやがスッキリ、安心いたしました。

==

>「どの 3 点も同一直線上にはありません」という条件は必要ないような気がしますが、何かに書いてある問題でしょうか?

実は。記事No.70253に関するスレッドで、質問者のしんやさんがおっしゃるに《多角形ができるように線分で結ぶことができる》とのことでして、しんやさんの中のイメージははたしてどういうものだったのかについてあれこれ想像をしておりました。

http://www2.rocketbbs.com/11/bbs.cgi?id=yosshy&mode=pickup&no=70253

2*n 個の点が「どの 3 点も同一直線上にはありません」という条件を満たすという特殊な場合には、(2*n)角形を作るアルゴリズムがあるのではないかと試行錯誤をしておりました。

2*n個の点の他にもう1個の点を「どの 3 点も同一直線上にはありません」という条件を満たしたまま追加できそうです。
この追加した点をOとしたときに、点Oを端として一方にだけのびている半直線を考え、この半直線を点Oの回りにくるっと360度回転させると、この半直線が通過していく順に2*n個の点に固有のナンバー(昇順)を与えられるのではないかと思ったのです。

(同時に複数の点の上を半直線が通過しないことが望ましいので《「どの 3 点も同一直線上にはありません」》という余計な仮定を持ち込んだのでした。)

昇順のナンバーとしては 1,2,3,...,(2*n-1),2*n を採用するのが自然ですね。

このナンバー順に、隣り合う点どうしで線分を引けば《多角形ができるように線分で結ぶことができる》ということになるのかもしれません。
【ならないかもしれません】


動機としては以上なのですけれども、考えていく途上で、2*n+1番目の点はどこに置くのがよいかや、「まてよ、2*n個の点をn個づつ含む2つの領域に分割する直線を与えるにはどのような方法があるのだろう」などと、迷い道くねくねといった心持ちだったのです。


==

ところで、ITさんからご教示を頂いた直線 L はとても素敵だと感動いたしました。

Lを平行にスライドすれば 2*n 個の点に ナンバーを付与できて、(2*k-1)番の点と 2*k番の点とを端にもつ線分を n 本、作り出すことができ、これらの線分は互いに交わりません。

以下の文献に書かれたアルゴリズムよりも(私にとっては)遥かに理解しやすいものです。

■早稲田数学フォーラム‖図チャレ 第 67 回 (2007 年 4 月)
( http://wasmath.la.coocan.jp/zukei067.pdf )


※大学入試なので、上記PDFにあるガッチリとした証明よりも記述量が少ない想定解があるのではないかなあと手探りをしておりました。

No.71105 - 2020/11/22(Sun) 22:18:15

Re: 平面の分割 / URHANL
「どの 3 点も同一直線上にはありません」という条件のもとで、平面上にN個の点がある。これらを頂点とするN角形を作るにはどうしたらよいか、これについて今日は別な方法を模索しておりました。

ITさんによるご教示を参考にいたしました。以下です。

2点を通る直線は有限個なので、それらのいずれとも平行でない直線Lが存在する。

この直線をy座標とし、それに直交する直線をx座標とします。

N個の点を、そのx座標の値について昇順に名前をつけます。今回は
p_1, p_2, p_3,...,p_N
とします。

座標の作り方から、これらの点のx座標の値は互いに相異なり、等しくなるようなペアはありません。

p_1 および p_N を通る直線L_2を考えます。直線L_2は平面を2つの領域に分割すると考えることとします。かたや領域A、かたや領域Bです。
非負整数J,Kがあって、
J≧K
J+K=N-2
の関係があるものとします。
領域Aに含まれる点の個数はJ個、領域Bに含まれる点の個数はK個、直線L_2上にある点の個数は2個とみなすこととします。

二通りに場合分けをします。
【1】K=0
【2】K≠0

【1】のとき。
直線L_2上および領域Aにあわせて N 個の点がありますが、x座標について昇順になっている隣接した2点を線分で結びます。
具体的には
p_1 および p_2 を端点とした線分をつくり
p_2 および p_3 を端点とした線分をつくり
……
p_(N-1) および p_N を端点とした線分をつくり
最後に
P_1 及びにp_Nを端点とした線分をつくります。
これで N角形をつくれました。


【2】のとき。

領域Aおよびに領域Bについて、【1】に準じてそれぞれ多角形を作れます。
最後に、P_1 及びにp_Nを端点とした線分を消します。
これで N角形をつくれました。

記事No.70253に関するスレッドで、質問者のしんやさんがおっしゃるに《多角形ができるように線分で結ぶことができる》というのは、なかなか大変なことでした。

No.71120 - 2020/11/23(Mon) 20:40:38
数学 / t
10円玉が2枚、50円玉が1枚、100円玉が3枚ある。
これらを使ってできる金額は何通りか?
ただし、0円は含めないものとする。

この問題がわかりません。よろしくお願いします。

No.71071 - 2020/11/21(Sat) 22:14:31

Re: 数学 / ヨッシー
10円玉で50円を作るとか、50円玉で100円を作るなどが出来ないので、
単純に枚数の組合せだけで計算出来ます。
 10円が0枚、1枚、2枚 の3通り
 50円が0枚、1枚 の2通り
 100円が0枚、1枚、2枚、3枚 の4通り
なので、
 3×2×4=24
これには0円が含まれるので 23通り。

No.71072 - 2020/11/21(Sat) 22:18:41

Re: 数学 / t
ありがとうございます!
No.71077 - 2020/11/21(Sat) 23:41:27
(No Subject) / やま
この問題が分かりません。どなたか解答だけでなく計算過程も教えて頂けると助かります🙇
No.71069 - 2020/11/21(Sat) 21:58:40

Re: / ast
ほぼ同じ内容なので前スレッドの質問と回答をまとめることにします.
# 以前のスレッドの回答はごちゃごちゃしてしまったので削除しました.

U の任意の点 p に対し, 局所座標近傍 (U,φ) に関する p の局所座標が (r,θ) であるとは, φ(p)=(r,θ) (同じことだが p=φ^(-1)(r,θ)) の関係があること, さらに函数 f(p) の局所座標表示 f(r,θ) とは記号の濫用で, 本来ならば f := f∘φ^(-1) とでもおいたときの, f: U'→R を f: U→R の局所座標表示と言っている, というようなことだろうと推察します.
# レジュメにどんな説明があるか分からないので, 提示されない以上はっきりしたことは言えない.

↑の予想で正しい場合, 本問では φ^(-1) は問題の中ほどに与えられているのでやるべきことは明白だと思います.

No.71079 - 2020/11/22(Sun) 01:13:44
(No Subject) / ぽわ
この問題なんですけど、得点の合計が3の倍数である確率をP_n,あまり1である確率をq_n,あまり2である確率をr_nとすると、偶数奇数で場合に分けたときそれぞれqn、rnを求めてほしいです。
No.71060 - 2020/11/21(Sat) 20:17:13
全22461件 [ ページ : << 1 ... 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 ... 1124 >> ]