[ 掲示板に戻る ]

過去ログ閲覧モード

(No Subject) / マキシマムトマト
正解は緑で囲った部分になるのですが自分の解き方だとどうしても違う答えになってしまいます…どこが間違ってますか?
No.68825 - 2020/08/09(Sun) 10:00:44

Re: / IT
3行目の右辺の1項目がおかしいのでは?
No.68826 - 2020/08/09(Sun) 10:47:29

Re: / マキシマムトマト
またどこか間違ってますか??
No.68827 - 2020/08/09(Sun) 11:06:55

Re: / IT
下から2行目はどうやって出しましたか、途中をていねいに書いてください。
No.68828 - 2020/08/09(Sun) 11:25:23

Re: / マキシマムトマト
こうしました!
No.68829 - 2020/08/09(Sun) 11:32:11

Re: / IT
3行目から4行目の変形がまちがってます。

一般に1/z=(1/x)+(1/y) のとき
    z=x+y ではありません。

No.68831 - 2020/08/09(Sun) 11:36:17

Re: / マキシマムトマト
たどりつけました!本当にありがとうございます!
No.68832 - 2020/08/09(Sun) 11:43:53
場合の数 / 高3
⓪は間違っているそうなのですが、正しい答えの出し方が分かりません。教えていただきたいです。よろしくお願いします。
No.68820 - 2020/08/09(Sun) 09:06:13

Re: 場合の数 / IT
対象の個数を少なくして考える。図化して考えるのも有効です。

男○女◎2人ずつの場合を考えると
*○*○*
女子◎は*のうちどこか2箇所に並べば良いです。

No.68822 - 2020/08/09(Sun) 09:21:38

Re: 場合の数 / 高3
わかりました。ありがとうございます。
No.68824 - 2020/08/09(Sun) 09:30:16
二次方程式 / 高3
(ト)についてききたいです。
答えは?Bで軸x=-b/2aが0かそれより小さければ良いと書いてあったのですが、軸が1より小さければ条件を満たすのではないのでしょうか?

No.68817 - 2020/08/09(Sun) 08:10:41

Re: 二次方程式 / IT
例えばa=-1,b=1のとき どんなグラフになりますか?

それでも納得できないようなら、問題文をもう一度よく読んでみてください。

No.68819 - 2020/08/09(Sun) 08:25:29

Re: 二次方程式 / 高3
あ、理解できました。最小値しか考えていなかったです。
ありがとうございました。

No.68821 - 2020/08/09(Sun) 09:15:20
複素数平面 / たかし
(3)のarg(β+1)がなぜこうなるのでしょうか?
No.68811 - 2020/08/08(Sat) 23:16:52

Re: 複素数平面 / ヨッシー

(2π−θ2)/2 は左図のような位置に来ますので、これは違います。

x=arg(β+1) とおくと、これの求め方はいくつかあって、
(1)xの角度を2倍する(角度xからさらにxだけ進むと)と、
 ∠BOB’=∠B’OP
であることから、1周回って、Bの角度θ2 の位置に来ます。
よって、
 2x=2π+θ2
より、
 x=(2π+θ2)/2

(2)
 θ2 の半分がx−πであるので、
 x=π+θ2/2

No.68812 - 2020/08/08(Sat) 23:46:17
線形代数 / 張り切りチャイティーヨ
この問題なのですが最終的にどのような形で答えを表せばいいのかが分かりません。可能でしたら答えを導出するまでの過程も解説して下さるとありがたいです
No.68810 - 2020/08/08(Sat) 22:47:35

Re: 線形代数 / 張り切りチャイティーヨ
年齢は大1で、解答の過程として(l,m,n)=P−1(a,b,c)の形で表すことはできました。でも、正直オンライン授業の関係上、線形代数に対する知識が疎く、問題文にある一次変換の行列表示を求めよに対する答えをどのように記述すればいいのかが分からないです。
No.68813 - 2020/08/08(Sat) 23:57:16

Re: 線形代数 / X
その過程で求めた
τ(l,m,n)={P^(-1)}{τ(a,b,c)}
(τは転置であることを示す記号とします)
を求める行列表示として問題ないと思います。

No.68814 - 2020/08/09(Sun) 00:23:23
RE:素数と対数:双子素数 / CEGIPO / とらんじっと
> (※DS BBSという別の数学掲示板に投稿した内容の再掲です。ここに書いてもいいですか?
> (あちらのシステムが大分旧く、傷んできたようなので発言の引っ越し先を検討中です)
>
> (一部改))
>
> (双子素数関連の話題:予想です)
>
> 【素数と対数:素数定理などとも何か関係ありそう】
>
> ※a^bはaのb乗の事とします。
> ※対数log(n)は自然対数とします。
>
> /**************************************/
> (予想1)
>
> nが7以上の自然数の時
>
> n≦p1<p2(=p1+2)≦2n-1
>
> を満たす双子素数の組(p1,p2)が
> 少なくとも1組存在する。
> /**************************************/
> /**************************************/
> (予想2(予想1より(かなり)強い予想))
>
> nが7以上の自然数の時
>
> n≦p1<p2(=p1+2)≦n+(log(n))^3
>
> を満たす双子素数の組(p1,p2)が
> 少なくとも1組存在する。
> /**************************************/
>
> ※計算機(プログラム)検証
> による予想のみの提示で申し訳ないです。
>
> ざっと検算した限りでは成り立ちそうに見えます。
>
> ちなみに予想2はもし成り立てば
> かなり効率の良い式です。
>
> (いずれの予想ももし成立すれば
> 双子素数が無限組存在する事が
> 即座に導ける予想です。
> (したがって当然未解決))
>
> 必定、僕の現在の数学力では到底証明できそうもないので
> 見識のある方、将来証明(もしくは反例を示す)
> していただけると嬉しいです。


∈……………∋


取り敢えず https://ci.nii.ac.jp/naid/110001260553 をご覧になりまして 25億くらいまでは大丈夫だと検証なさってください。

No.68807 - 2020/08/08(Sat) 22:19:10

Re: RE:素数と対数:双子素数 / CEGIPO / とらんじっと
失礼いたしました。

http://www2.rocketbbs.com/11/bbs.cgi?quote=68761&id=yosshy&mode=res&resto=68761
への応答です。

No.68809 - 2020/08/08(Sat) 22:21:09

Re: RE:素数と対数:双子素数 / CEGIPO / とらんじっと
CEGIPO> nが7以上の自然数の時
CEGIPO>
CEGIPO> n≦p1<p2(=p1+2)≦2n-1
CEGIPO>
CEGIPO> を満たす双子素数の組(p1,p2)が
CEGIPO> 少なくとも1組存在する。

ということは。
m = n -1
として、

mが6以上の自然数の時

(m +1)≦p1<p2(=p1+2)≦2(m +1) -1

を満たす双子素数の組(p1,p2)が
少なくとも1組存在する。


ということは。

mが6以上の自然数の時

m <p1<p2(=p1+2)<2(m +1)

すなわち
m <p1<2m
m +2 <p2 <2m +2

ですか

■ベルトラン・チェビシェフの定理.
全ての自然数 n に対して,n<p≦2n を満たす. 素数 p が存在する。

と見た目は似ていて本質はまるで違うわけですね。


全ての自然数 n に対して,n<p1≦2n を満たす. 双子素数 p1,p2=p1+2 が存在する。


かなり強烈ですねえ。

No.68873 - 2020/08/10(Mon) 23:45:01
(No Subject) / ブルー
べき級数の収束域を求める問題です。
1.Σ(n=1→∞){(-1)^n/n^2}x^n

2. Σ(n=1→∞){1/√n}x^2n

3. Σ(n=1→∞){(-1)^n+1/log(n+1)}x^n

よろしくお願いいたします。

No.68806 - 2020/08/08(Sat) 21:23:59

Re: / ブルー
質問をした後に解き進め、1と2は解けましたので、3のみお願いいたします。
No.68808 - 2020/08/08(Sat) 22:20:35
(No Subject) / あ
ここの式変形ってどうなっているのですか?
No.68801 - 2020/08/08(Sat) 16:46:51

Re: / ヨッシー
以下の通りです。

No.68802 - 2020/08/08(Sat) 17:08:50
積分 / まいこ
曲線y=xcox(0≦x≦π)について次の問いに答えよ。

(1)曲線上の点P(t,tcost)(t>0)における接線が原点Oを通るとき、t=?
(2)(1)の接線と曲線とで囲まれる領域をx軸のまわりに回転してできる立体の体積は?

(1)はπ、(2)は3/16π^2(π^2-2)です。
解説をお願いします!

No.68800 - 2020/08/08(Sat) 16:18:45

Re: 積分 / 関数電卓
取り急ぎ(2)のみ。
求める回転体は,
 図の黄緑部分を回転させた円錐から水色部分を回転させた立体を除いたもの
です。体積の計算は,こちら

No.68803 - 2020/08/08(Sat) 17:30:12

Re: 積分 / X
(1)
y=xcosx (A)
より
y'=cosx-xsinx
∴点(t,tcosx)における(A)の接線の方程式は
y=(cost-tsint)(x-t)+tcost
これが原点を通るので
0=(cost-tsint)(-t)+tcost
これより
(t^2)sint=0
条件から
0<t≦π (B)
ゆえ
sint=0
∴(B)より
t=π

No.68805 - 2020/08/08(Sat) 21:21:25

Re: 積分 / まいこ
ありがとうございました!
No.68869 - 2020/08/10(Mon) 19:56:37
(No Subject) / 受験生
この問題について質問ですが、二直線が交わらず、平行にならないことを示せれば、ねじれの位置ということになるのはわかります。
No.68796 - 2020/08/08(Sat) 11:53:41

Re: / 受験生
このようにやったのですが、続きをどう書いて良いのかわかりません。
No.68797 - 2020/08/08(Sat) 11:54:53

Re: / ヨッシー
?A?B?Cを同時に満たすs、tは存在しないので、lとmは交わらない
で良いと思います。

No.68798 - 2020/08/08(Sat) 11:57:31
積分計算 / Ran
?怒-4log(cos^2x)・tanx}dx

の解き方を教えてください。
答えが4(log |cosx|)^2 +C (Cは積分定数)なのですが、これを微分しても上の式にならなくて困ってます

No.68794 - 2020/08/08(Sat) 11:30:24

Re: 積分計算 / IT
微分したらどうなりましたか?
なお、a>0について log(a^2)=2loga です。

No.68795 - 2020/08/08(Sat) 11:41:11
入門統計学 ポアソン分布 / れい
どなたかこの問題を教えてください。解き方もお願いします。

あるレンタカーの営業所には 3 台の車があり、1 日単位で貸し出す。レンタカーの需 要は 1 日平均 2 台のポアソン分布に従うとする。1 台を 1 日貸すと 7000 円の収入が得られ る。他方、営業所全体の経費として 1 日当たり 8000 円かかる。その営業所全体での 1 日の 利益の期待値を求めよ。

No.68789 - 2020/08/08(Sat) 06:52:00

Re: 入門統計学 ポアソン分布 / IT
平均値2のポアソン分布の確率関数(P(x)とします) は分りますか?

貸し出し台数は、0,1,2,3 のいずれかですから

(P(1)+2P(2)+3P(3))*7000-8000 が求める期待値になると思います。

No.68793 - 2020/08/08(Sat) 11:12:49

Re: 入門統計学 ポアソン分布 / ヨッシー
本件、投稿主から削除依頼が来ていますが、回答も付いていることですし、
メールアドレスだけ削除して、記事はひとまずこのままとします。
何かの懸賞とか、差し障りのある問題でしたら、お知らせください。

No.69053 - 2020/08/17(Mon) 00:36:52
不等式の証明 / あか
画像の問題の解き方を教えてください。
sinxをマクローリン展開してとこうとしてもうまくいきませんでした

No.68785 - 2020/08/08(Sat) 01:53:01

Re: 不等式の証明 / WIZ
f(x) = sin(x)-ax とおくと、f'(x) = cos(x)-a です。

(A) a ≦ cos(1) の場合
x ∈ (0, 1) で cos(x) は単調減少なので、cos(x) > cos(1) > 0 が成立します。
よって、a ≦ cos(1) ならば、 f'(x) > 0 となり、f(x) は単調増加となり、f(x) > f(0) = 0 となります。
よって、この場合、f(x) < 0 となる x は存在しません。

(B) a > cos(1) の場合
0 < x < arccos(a) で f'(x) > 0 なので、f(x) は単調増加、この範囲で f(x) > f(0) = 0 です。
x = arccos(a) で f'(x) = 0 なので、f(x) は極大、f(x) > 0 です。
arccos(a) < x < 1 で f'(x) < 0 なので、f(x) は単調減少です。
この範囲で、f(x) > f(1) = sin(1)-a*1 ですので、
f(1) = sin(1)-a < 0 つまり sin(1) < a なら題意の x は存在し、sin(1) ≧ a なら存在しないと言えます。

sin(1) > cos(1) ですので、(A)(B)より「a > sin(1) なら成立し、a ≦ sin(1) なら成立しない」となります。

# 勘違い、計算間違いしていたらごめんなさい!

No.68799 - 2020/08/08(Sat) 14:58:34
比を求める / だい
中3の数学です。

△ABCの辺BCの中点をM、辺ACの3等分点をD、Eとする。また、AMとBDの交点をFとする。2点B、Eを結び、AMとの交点をGとする。
このとき、BG:GEを求めなさい。

という問題が分かりません。

よろしくお願いいたします。

No.68779 - 2020/08/07(Fri) 23:57:31

Re: 比を求める / らすかる
Eを通りAMに平行な直線とBCの交点をHとすると
△CEH∽△CAMなのでMH:HC=AE:EC=2:1
よってBM:MH:HC=3:2:1なので
△BMG∽△BHEからBG:GE=BM:MH=3:2

No.68782 - 2020/08/08(Sat) 00:17:23

Re: 比を求める / だい
らすかるさん、ご回答ありがとうございました。
平行線を引くのがポイントなのですね。
理解できました。
大変助かりました。

No.68792 - 2020/08/08(Sat) 11:07:36
線分の長さ / だい
中3の数学です。

平行四辺形ABCD。
BE:EC=3:2。
AE=16cmのとき、線分AFの長さを求めよ。

という問題が分かりません。

よろしくお願いいたします。

No.68778 - 2020/08/07(Fri) 23:46:35

Re: 線分の長さ / らすかる
BE:EC=3:2から△EABと△EGCの相似比は3:2なので
AE:EG=3:2、AB:CG=3:2
AB:CG=3:2からAB:DG=3:5なので
△FABと△FGDの相似比は3:5、よってAF:FG=3:5
AE:EG=3:2=24:16
AF:FG=3:5=15:25
なので
AF:FE:EG=15:9:16
よってAF=16(AF/AE)=16(15/24)=10cm

No.68781 - 2020/08/08(Sat) 00:12:45

Re: 線分の長さ / √
別解かも。

BE:EC=3:2
だからAD=5

三角形AFDと、三角形EFBは相似
だからAF:EF=5:3
AF=16cmx(5/8)=10cm
かな?

Gは全く必要ないよーな。

No.68783 - 2020/08/08(Sat) 00:43:57

Re: 線分の長さ / らすかる
その方法の方がはるかに簡単ですね。
私の解答は遠回りしていました。

No.68784 - 2020/08/08(Sat) 01:29:46

Re: 線分の長さ / だい
らすかるさん、√さん、ご回答ありがとうございました。
理解することができました。
大変助かりました。

No.68791 - 2020/08/08(Sat) 11:06:14
確率の問題 / 場合の数
(問題)3個のサイコロを同時に1回投げるとき、2個以上のサイコロが、同じ目を出す確率は?

余事象から求める解答ではなく、2個のサイコロの目が同じ場合と、3個のサイコロの目が同じ場合を足す方法での求め方を教えてください。

3個のサイコロの目が同じ確率は
(1/6)×(1/6)×(1/6)×6=(1/36)

2個のサイコロの目が同じ確率の求め方がわかりません。

No.68767 - 2020/08/07(Fri) 21:34:29

Re: 確率の問題 / ヨッシー
2個のサイコロが同じ確率は
 2個出る目の選び方が6通り、
 残りの1個の目の選び方が5通り
選んだ目をAABとすると、
 AAB,ABA,BAA
の3通りの順番があるので、
 6×5×3=90
全部の目の出方は 6^3=216(通り)なので、
 90/216=5/12

3個同じ場合と足し合わせて
 1/36+5/12=16/36=4/9
です。

No.68771 - 2020/08/07(Fri) 22:18:04

Re: 確率の問題 / 場合の数
ヨッシーさん
解答ありがとうございます。

2個出る目の選び方が6通りというのは
(A,B)=(1.1),(2,2),(3,3),(4,4),(5,5),(6,6)
の6通り。

次の残り1個の目の選び方が5通りというのは
(A,B)=(1,1)のとき
C=2,3,4,5,6の5通りですが、
(2.2)のときも
C=1,3,4,5,6の5通りあります。
とすると、
(3.3)のとき〜(6.6)のときまでも同様で
5通り×6=30通りになる。
という考え方は、どこがおかしい事になっているのでしょうか?

理解不足で申し訳ありません。
よろしくお願いいたします。

No.68773 - 2020/08/07(Fri) 22:54:16

Re: 確率の問題 / ヨッシー
おかしくありません。

それが
 6×5×3=90
の 6×5 の部分ですね。

No.68788 - 2020/08/08(Sat) 06:34:15
データの分析 / s
(3)の答えはどうしてこのようになるのですか?
回答の解説を見てもどこにどの数が当てはまるのか分かりません。

No.68762 - 2020/08/07(Fri) 18:18:10

Re: データの分析 / mathmouth
解説の右側にちゃんと書いてあります。
2つの変量X,Yをそれぞれx,yに一次式で変換した際、Xの係数とYの係数が異符号ならば相関係数は異符号に、同符号なら同符号になります。
本問では変量Yはそのままで変量Xが変量Zに変換されてますが、Z=-X+1440(定数部分はどうでもいい)よりXの係数が負なのでYの変量変換をY=Y・1と考えれば(-1)・1<0より相関係数はもとの逆符号となります。

上記の主張が分からなければ自分で相関係数の定義式から導くか、参考書等を見て確認してください。覚えなくても少し考えればわかると思います。

もっとも、変量変換をしても相関係数はそのままか逆符号にしかならないことが分かっていればZ,Yに正の相関があるのは自明なので逆符号の0.87が正解となります。平均や分散・標準偏差と違って、相関係数は共分散と標準偏差の積の比の値なので係数の絶対値の情報は約分で打ち消され、係数の符号のみに着目すればいいわけです。

No.68763 - 2020/08/07(Fri) 19:35:30
素数と対数:双子素数 / CEGIPO
(※DS BBSという別の数学掲示板に投稿した内容の再掲です。ここに書いてもいいですか?
(あちらのシステムが大分旧く、傷んできたようなので発言の引っ越し先を検討中です)

(一部改))

(双子素数関連の話題:予想です)

【素数と対数:素数定理などとも何か関係ありそう】

※a^bはaのb乗の事とします。
※対数log(n)は自然対数とします。

/**************************************/
(予想1)

nが7以上の自然数の時

n≦p1<p2(=p1+2)≦2n-1

を満たす双子素数の組(p1,p2)が
少なくとも1組存在する。
/**************************************/
/**************************************/
(予想2(予想1より(かなり)強い予想))

nが7以上の自然数の時

n≦p1<p2(=p1+2)≦n+(log(n))^3

を満たす双子素数の組(p1,p2)が
少なくとも1組存在する。
/**************************************/

※計算機(プログラム)検証
による予想のみの提示で申し訳ないです。

ざっと検算した限りでは成り立ちそうに見えます。

ちなみに予想2はもし成り立てば
かなり効率の良い式です。

(いずれの予想ももし成立すれば
双子素数が無限組存在する事が
即座に導ける予想です。
(したがって当然未解決))

必定、僕の現在の数学力では到底証明できそうもないので
見識のある方、将来証明(もしくは反例を示す)
していただけると嬉しいです。

No.68761 - 2020/08/07(Fri) 17:24:37
Cの計算の仕方について / しょう
Cの計算の仕方について質問です。2番の(2)の1行目から2行目の処理の仕方が分かりません。どのように処理しているのでしょうか?よろしくお願いします。
No.68752 - 2020/08/07(Fri) 11:28:29

Re: Cの計算の仕方について / らすかる
「2番の(2)」とは(ii)のことでしょうか。
もしそうなら、先頭行に書かれている式にそのまま代入して
Cの式を階乗の式に変形しているだけです。

No.68753 - 2020/08/07(Fri) 11:43:54

Re: Cの計算の仕方について / しょう
そうです、IIです。すみません、そのまま代入というのはどういうことなのでしょうか?
No.68754 - 2020/08/07(Fri) 11:55:29

Re: Cの計算の仕方について / らすかる
先頭の行に
nCr=n!/{r!(n-r)!}と書いてありますよね。
これのnにn-1を代入してrにr-1を代入すれば
(n-1)C(r-1)=(n-1)!/{(r-1)!(n-r)!}
となり、2行目の左側の項になります。
右側の項も同様です。

No.68757 - 2020/08/07(Fri) 12:24:24

Re: Cの計算の仕方について / しょう
そこまでは分かるのですが、分からないのがその部分から下にかけての計算の処理なのです。分母をそろえて計算してる部分ですかね?

分かりにくい質問をしてしまい申し訳ないです。

No.68759 - 2020/08/07(Fri) 12:36:44

Re: Cの計算の仕方について / らすかる
では、わからないのは「1行目から2行目の処理」ではなく
「2行目から3行目の処理」ということですね?
# 1行目はCの式、2行目はその次の行ですから
# 「1行目から2行目の処理」とはCの式を階乗の式に展開する処理のことですね。

(r-1)!にrを掛ければr!になり、(n-r-1)!にn-rを掛ければ(n-r)!になりますので、
左項の分子分母にrを掛けて右項の分子分母にn-rを掛ければ通分できます。
左項は (n-1)!/{(r-1)!(n-r)!}=(n-1)!r/{r!(n-r)!}
右項は (n-1)!/{r!(n-r-1)!}=(n-1)!(n-r)/{r!(n-r)!}
なので、足して
{(n-1)!r+(n-1)!(n-r)}/{r!(n-r)!}
=(n-1)!{r+(n-r)}/{r!(n-r)!}
となります。

No.68760 - 2020/08/07(Fri) 13:04:46
ローラン展開について / meow
(1)の収束半径は2になりました.
(2)の解き方について教えていただきたいです.

No.68744 - 2020/08/07(Fri) 04:03:16

Re: ローラン展開について / meow
f(z)=1/(z-2)
=1/z * 1/(1-2/z)

ここで
Σ[n=0,∞]z^n = 1/(1-z)
を用いて,

1/z*Σ[n=0,∞](2/z)^n
が答えで良いでしょうか

No.68745 - 2020/08/07(Fri) 04:14:33

Re: ローラン展開について / ast
よいです.
No.68766 - 2020/08/07(Fri) 21:11:11
全22696件 [ ページ : << 1 ... 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 ... 1135 >> ]