a[0]=1,b[0]=0 a[n+1]=a[n]+b[n],b[n+1]=a[n](n=0,1,2,...)
?@a[n+2]=a[n+1]+a[n] を示せ
?Aa^2[n]-a[n]b[n]-b^2[n]=(-1)^n
よろしくお願いいたします。
|
No.67563 - 2020/07/04(Sat) 14:41:48
| ☆ Re: 数列 / ヨッシー | | | (1) a[n+2]=a[n+1]+b[n+1] =a[n+1]+a[n]
(2) c[n]=a[n]^2-a[n]b[n]-b[n]^2 とおくと、 c[0]=a[0]^2−a[0]b[0]−b[0]^2=1 c[1]=a[1]^2−a[1]b[1]−b[1]^2=−1 c[n+2]=a[n+2]^2−a[n+2]b[n+2]−b[n+2]^2 =a[n+2]^2−a[n+2]a[n+1]−a[n+1]^2 =(a[n+1]+a[n])^2−(a[n+1]+a[n])a[n+1]−a[n+1]^2 =a[n+1]^2+2a[n+1]a[n]+a[n]^2−a[n+1]^2−a[n]a[n+1]−a[n+1]^2 =a[n+1]a[n]+a[n]^2−a[n+1]^2 =a[n+1]b[n+1]+b[n+1]^2−a[n+1]^2 =−c[n+1] よって、c[n] はc[0]=1, c[1]=-1, 公比−1の等比数列なので、 c[n]=(-1)^n
|
No.67571 - 2020/07/04(Sat) 16:44:13 |
|