[ 掲示板に戻る ]

過去ログ閲覧モード

二次関数 / とら
339番の解法がよくわかりません。最初に対象移動をしてから頂点を使ってpとqを求めてはいけないのでしょうか。
No.66331 - 2020/06/04(Thu) 23:55:39

Re: 二次関数 / とら
問題文です。
No.66332 - 2020/06/04(Thu) 23:57:39

Re: 二次関数 / とら
答えです。
No.66333 - 2020/06/04(Thu) 23:58:38

Re: 二次関数 / とら
自分の回答です。
No.66334 - 2020/06/05(Fri) 00:01:23

Re: 二次関数 / トーカ
一般的に点(x,y)をx軸方向にp、y軸方向にqだけ移動し、その後y軸に関して対象移動した点はy軸に関して対象移動した後にx軸方向にp、y軸方向にqだけ移動した点と異なりますので、順番が大事です。 
例えば点(5,0)をx軸方向に4、y軸方向に2移動、その後y軸に関して対象移動した点は(-9,2)であり。今度は点(5,0)をy軸に関して対象移動した後にx軸方向に4、y軸方向に2移動すると(-1,2)で異なることは分かると思います。

No.66343 - 2020/06/05(Fri) 02:51:09

Re: 二次関数 / トーカ
あと、とらさんの回答の中で平方完成で計算間違いがあります。y=2x^2-6x+4=2(x-3)^2-14 ではなく
  y=2x^2-6x+4=2(x-3/2)^2-1/2 です。
 同じような間違いでy=2x^2-2x+3=2(x-1)^2+1 ではなく
 y=2x^2-2x+3=2(x-1/2)^2+5/2 です。 もしかすると平方完成の仕方を勘違いしているかも知れませんので教科書等でご確認ください。

 
  

No.66344 - 2020/06/05(Fri) 03:11:42

Re: 二次関数 / とら
丁寧な回答ありがとうございました。
No.66349 - 2020/06/05(Fri) 07:24:09
定積分 / ぽんち
解き方を教えてください。
No.66330 - 2020/06/04(Thu) 23:52:53

Re: 定積分 / X
√(e^x-1)=t
と置くと
e^x=t^2+1
(e^x)dx=2tdt
∴dx={2t/(t^2+1)}dt
∴(与式)=2∫[1→√3]dt/(1+t^2)
=2[arctant][1→√3]
=2(π/3-π/4)
=π/6

No.66336 - 2020/06/05(Fri) 00:17:16

Re: 定積分 / ぽんち
Xさんありがとうございます。
No.66339 - 2020/06/05(Fri) 00:58:12
教えてください / フィヨルド
解法を教えてください。
No.66329 - 2020/06/04(Thu) 22:11:41

Re: 教えてください / X
条件から
Q(α,α^2+aα),S(β,β^2+aβ)
(但しα≠β)
と置くことができます。
また、対角線PRが載っているlの傾きが1
であることから対角線QSの傾きは
-1となりますので、直線QSの方程式は
y=-x+t
と置くことができます。
∴α、βはxの二次方程式
-x+t=x^2+ax (A)
の解。
(A)より
x^2+(a+1)x-t=0 (A)'
∴解と係数の関係から
α+β=-(a+1) (B)
αβ=-t (C)
また(A)'の解の判別式をDとすると
D=(a+1)^2-4t>0 (D)
更に対角線QSの中点がl上にあることから
(α+β)/2={(α^2+aα)+(β^2+aβ)}/2 (E)
(E)より
α+β=(α+β)^2-2αβ+a(α+β)
(B)(C)を代入して
-(a+1)=(a+1)^2+2t-a(a+1)
∴t=-(a+1)
これを(D)に代入して
(a+1)^2+4(a+1)>0
(a+1)(a+5)>0
∴求めるaの値の範囲は
a<-5,-1<a
となります。

No.66335 - 2020/06/05(Fri) 00:14:31

Re: 教えてください / X
ちなみに別解として、Q,SではなくてP,Rの座標を
適当な変数で置く方針も考えられますが、こちら
の方は、場合分けが3つ必要だったり、三次関数を
扱う必要があったりとかなり煩雑になります。

No.66338 - 2020/06/05(Fri) 00:31:33

Re: 教えてください / フィヨルド
大変助かりました。本当にありがとうございました。
No.66341 - 2020/06/05(Fri) 02:19:34
(No Subject) / ren
高3です。
答えは(1)k=4/9 (2)9√2-9 です。

No.66324 - 2020/06/04(Thu) 19:49:26

Re: / ヨッシー

(1)
y=f(x) のグラフは上の通りで、
y=−x+k と3点を共有するのは、
図のような状態です。

No.66326 - 2020/06/04(Thu) 20:25:56
(No Subject) / 素人
この問題のス〜チの解説をお願いします。
No.66323 - 2020/06/04(Thu) 19:36:46

Re: / ヨッシー
条件より、
 BD:CD=6:1
よって、
 BD=(6/7)BC=12√7/7
余弦定理より
 AD^2=AB^2+BD^2−2AB・BDcos∠ABD
  =36+144/7−2・6・(12√7/7)(2/√7)
  =108/7
正弦定理より
 2R1=AD/sin∠ABD=(6√3/√7)/(√3/7)=6
 R1=3

No.66327 - 2020/06/04(Thu) 20:46:29
領域 / ちひろ
不等式(x^+y^-6)(x^2+y^2-6√2y+12)≦0で表される領域の面積を求めよ。という問題です。
答えは8π+6√3なのですが、どう考えたらいいかわかりません。よろしくお願いします。

No.66320 - 2020/06/04(Thu) 19:13:29

Re: 領域 / ヨッシー
2つの円
 x^2+y^2−6=0
 x^2+y^2−6√2y+12=0
を考えます。
 (x^2+y^2−6)(x^2+y^2−6√2y+12)≦0
は、
 x^2+y^2−6≦0(円内) かつ x^2+y^2−6√2y+12≧0(円外)
または
 x^2+y^2−6≧0(円外) かつ x^2+y^2−6√2y+12≦0(円内)
を意味します。

No.66321 - 2020/06/04(Thu) 19:19:50

Re: 領域 / ちひろ
ありがとうございます。
この先はどう計算したらいいでしょうか?

No.66322 - 2020/06/04(Thu) 19:30:45

Re: 領域 / ヨッシー
まずは、両円の中心と半径を求めましょう。
でもって、それを描きましょう。

No.66325 - 2020/06/04(Thu) 20:12:26

Re: 領域 / ちひろ
円の重なり合うところが計算できません(>_<)
No.66340 - 2020/06/05(Fri) 01:36:26

Re: 領域 / ヨッシー

こういう図が描けたと思います。
OA,OBはもちろん半径ですが、ABの長さはいくらですか?

No.66348 - 2020/06/05(Fri) 07:18:24

Re: 領域 / ちひろ
ABは√6になるので、正三角形ということですね!
あとは扇形から三角形の面積を引いて、2倍すれば答えになりました!
ありがとうございました!

No.66356 - 2020/06/05(Fri) 14:44:47
(No Subject) / p
添付の問題の解法を教えてください。
(3)のみでお願いします。

No.66314 - 2020/06/04(Thu) 14:26:11

Re: / ヨッシー
10個のAの並べ方は1×10 か 2×5 かです。

それに、最大2cmまでの余白を足したものまでが、A10枚で
作れるものです。
余白を3cm 足すと、Aがもっと入るので、2cm までです。
縦が、+0cm, +1cm, +2cm の3通り、横も同様の3通りで、9通り。
合計 9×2=18(通り)です。
サイズは、解答の通りです。

並べ方は他にもありますが、サイズは同じです。

No.66319 - 2020/06/04(Thu) 17:19:28

Re: / p
ありがとうございます。
No.66694 - 2020/06/11(Thu) 22:37:25
(No Subject) / p
添付の問題の解法を教えてください。
No.66313 - 2020/06/04(Thu) 14:25:11

Re: / ヨッシー
図に書き込まれた寸法がほとんど見えません。
その部分だけ大写ししていただくか、
EF=〇〇
など、書き上げて頂けますか?

No.66318 - 2020/06/04(Thu) 16:02:38
ネピア数の極限値 / 大学生
写真の3問が分かりません。2と3についてはネピア数に持ってくことは分かるのですが変換の仕方が分からないです。よろしくお願いします。
No.66311 - 2020/06/04(Thu) 13:35:33

Re: ネピア数の極限値 / X

(1)
n≧4なるnに対し
0<a[n]<(n!+n!)/(n+2)!=2/{(n+1)(n+2)}
∴はさみうちの原理により
lim[n→∞]a[n]=0

(2)
1/(2x)=h
と置きましょう。

(3)
2/x=h
と置きましょう。

No.66312 - 2020/06/04(Thu) 13:59:18

Re: ネピア数の極限値 / らすかる
(2)と(3)はネピア数とは関係ありません。
(関係があるように解くこともできますが、面倒になるだけです。)

(2)
2+1/x>2なので
lim[x→∞](2+1/x)^x≧lim[x→∞]2^x=+∞

(3)
x>3のとき1/2+1/x<5/6なので
0≦lim[x→∞](1/2+1/x)^x≦lim[x→∞](5/6)^x=0

No.66317 - 2020/06/04(Thu) 15:48:58
(No Subject) / モブ
a(1)=1, a(n+1)=1+1/a(n) (n>=1)について

1.n>=2のとき2>=a(n)>=3/2であることを示せ。
2.x=1+1/xの正の解をαとする。n>=2のときαa(n)>2であることを示せ。
3.n>=2のとき|a(n+1)−α|<(1/2)|a(n)−α|であることを

示せ。
4.lim(n→∞)a(n)=αを示せ。

という問題が分かりません。どうか教えてください。

No.66308 - 2020/06/04(Thu) 11:27:58

Re: / WIZ
(1)
a[2] = 1+1/a[1] = 1+1/1 = 2 なので、3/2 ≦ a[2] ≦ 2 です。
k を2以上の自然数として、3/2 ≦ a[k] ≦ 2 と仮定すると、
⇒ 1/2 ≦ 1/a[k] ≦ 2/3
⇒ 1+1/2 ≦ 1+1/a[k] ≦ 1+2/3
⇒ 3/2 ≦ a[k+1] ≦ 5/3 < 2
となり k+1 でも成立する。
よって、数学的帰納法により、2以上の任意の自然数で成立する。

(2)
x^2-x-1 = 0 より、x = (1±√5)/2 ですが、α > 0 より、α = (1+√5)/2 です。

k を2以上の自然数として、(1)の結果より、3/2 ≦ a[k] なので、
αa[k] ≧ {(1+√5)/2}(3/2) > (1+2)(3/4) > 2 となります。

(3)
n を2以上の自然数とすると、(2)の結果より、αa[n] > 2 なので、
1/(αa[n]) < 1/2 です。

よって、
a[n+1]-α = (1+1/a[n])-(1+1/α) = (α-a[n])/(αa[n]) < (α-a[n])/2
⇒ |a[n+1]-α| < |a[n]-α|/2

(4)
n を2以上の自然数とすると、(3)の結果より、
|a[n]-α| < (1/2)|a[n-1]-α| < ((1/2)^2)|a[n-2]-α| < ・・・ < ((1/2)^(n-1))|a[1]-α| = ((1/2)^n)|1-√5|
よって、n→∞ のとき、 ((1/2)^n)|1-√5|→0 となります。

0 ≦ |a[n]-α| ですので、挟み打ちにより lim[n→∞]|a[n]-α| = 0 となり、
よって、a[n]→α といえます。

No.66310 - 2020/06/04(Thu) 13:30:05

Re: / モブ
> (1)
> a[2] = 1+1/a[1] = 1+1/1 = 2 なので、3/2 ≦ a[2] ≦ 2 です。
> k を2以上の自然数として、3/2 ≦ a[k] ≦ 2 と仮定すると、
> ⇒ 1/2 ≦ 1/a[k] ≦ 2/3
> ⇒ 1+1/2 ≦ 1+1/a[k] ≦ 1+2/3
> ⇒ 3/2 ≦ a[k+1] ≦ 5/3 < 2
> となり k+1 でも成立する。
> よって、数学的帰納法により、2以上の任意の自然数で成立する。
>
> (2)
> x^2-x-1 = 0 より、x = (1±√5)/2 ですが、α > 0 より、α = (1+√5)/2 です。
>
> k を2以上の自然数として、(1)の結果より、3/2 ≦ a[k] なので、
> αa[k] ≧ {(1+√5)/2}(3/2) > (1+2)(3/4) > 2 となります。
>
> (3)
> n を2以上の自然数とすると、(2)の結果より、αa[n] > 2 なので、
> 1/(αa[n]) < 1/2 です。
>
> よって、
> a[n+1]-α = (1+1/a[n])-(1+1/α) = (α-a[n])/(αa[n]) < (α-a[n])/2
> ⇒ |a[n+1]-α| < |a[n]-α|/2
>
> (4)
> n を2以上の自然数とすると、(3)の結果より、
> |a[n]-α| < (1/2)|a[n-1]-α| < ((1/2)^2)|a[n-2]-α| < ・・・ < ((1/2)^(n-1))|a[1]-α| = ((1/2)^n)|1-√5|
> よって、n→∞ のとき、 ((1/2)^n)|1-√5|→0 となります。
>
> 0 ≦ |a[n]-α| ですので、挟み打ちにより lim[n→∞]|a[n]-α| = 0 となり、
> よって、a[n]→α といえます。



解説ありがとうございます。大変わかりやすかったです。

No.66316 - 2020/06/04(Thu) 15:11:49
線形数学 / まるまる
次の行列に対して、行列写像F(A)=AxのKerF,ImFの次元と基をそれぞれ求めよ。
(1 3 -4)
(4 -3 -1) =A
(2 -4 5)

簡約化すると、
(1 0 0)
(0 1 0)
(0 0 1)
になり、基の出し方が分からなくなってしまいました。
よろしくお願いいたします。

No.66303 - 2020/06/04(Thu) 07:54:24

Re: 線形数学 / Ker
正則[まさのり君に邂逅したことあり] ですよ.....
No.66304 - 2020/06/04(Thu) 08:49:49

Re: 線形数学 / まるまる
どういうことですか??
No.66305 - 2020/06/04(Thu) 08:59:17

Re: 線形数学 / まるまる
解決したので大丈夫です。
ありがとうございました。

No.66315 - 2020/06/04(Thu) 14:55:49
対数計算 / tokuda
3/10((-1/3)*log_2(1/3)+(-2/3)*log_2(2/3))
+7/10((-3/7)*log_2(3/7)+(-4/7)*log_2(4/7))
このように複雑な対数を簡単にするには、どのように方針を立てればよいでしょうか

No.66299 - 2020/06/04(Thu) 01:45:07

Re: 対数計算 / らすかる
log[a]b/c=log[a]b-log[a]cのように
すべて分割すると簡単だと思います。

No.66300 - 2020/06/04(Thu) 04:04:22

Re: 対数計算 / tokuda
ありがとうございます。
なんとか計算できました。

No.66309 - 2020/06/04(Thu) 12:05:53
(No Subject) / 高校生
この添削をお願いしたいです!
No.66290 - 2020/06/03(Wed) 21:50:51

Re: / IT
「a についての恒等式とみる。」というのは間違いです。
その直後も間違い(根拠なし)です。 以後すべてだめです。

a-b=b-c=c-a=0
(a-b)^2=(b-c)^2=(c-a)^2=0 を目標にするとよいとおもいます。

No.66291 - 2020/06/03(Wed) 22:15:11

Re: / 高校生
どのように導けばいいでしょうか?
No.66294 - 2020/06/03(Wed) 22:41:55

Re: / IT
a-b=b-c=c-a=0
⇔(a-b)^2=(b-c)^2=(c-a)^2=0
⇔(a-b)^2+(b-c)^2+(c-a)^2=0
これを展開してみてください。

No.66295 - 2020/06/03(Wed) 23:11:46

Re: / 高校生
a=b=cを示すために、上のような変形をしてもいいのですか?
No.66298 - 2020/06/03(Wed) 23:36:35

Re: / IT
a,b,c が実数という条件の下では正しい同値変形になっていますから問題ないと思いますが、

なぜ、どこが、使って良いかどうか不安ですか?

No.66302 - 2020/06/04(Thu) 07:21:24
(No Subject) / まや
(2)の方針を教えていただきたいです。
No.66287 - 2020/06/03(Wed) 21:39:31

Re: / 高校生
すみません、(2)のことです。
No.66293 - 2020/06/03(Wed) 22:39:30

Re: / ヨッシー
(x+ay+b)(x+cy+d) と因数分解できたとして、
x^2−xy+ky^2−x−7y−2 と比較して
a,b,c,d を求め、最後にy^2の係数が何になるか計算します。

No.66301 - 2020/06/04(Thu) 07:10:45

Re: / heisuke
{2 x - y - 1, 2 k y - x - 7, k y^2 + x^2 - x y - x - 7 y - 2} == {0, 0, 0}

を解き k = -6 (x = ___, y___ _)

No.66306 - 2020/06/04(Thu) 09:46:20
(No Subject) / みいひ
この問題なのですが、答えが全然違うのですが、どこがいけないのでしょうか?
No.66284 - 2020/06/03(Wed) 21:26:31

Re: / あ
最初の方の「1の両辺にかけて」の次の行がおかしいと思います。
No.66285 - 2020/06/03(Wed) 21:38:04

Re: / みいひ
どうすればよかったのでしょうか?
No.66286 - 2020/06/03(Wed) 21:38:38

Re: / あ
最後の項に(x+1)の2乗かけるべき
No.66288 - 2020/06/03(Wed) 21:44:57
(No Subject) / 偏微分
x,yを実数とするとき、連立方程式 -sinxcosy=0 かつ -cosxsiny=0 の解はどうなりますか?
No.66282 - 2020/06/03(Wed) 21:04:39

Re: / X
条件から
sinx=0かつsiny=0
又は
cosx=0かつcosy=0
∴(x,y)=(kπ,lπ),(π/2+pπ,π/2+qπ)
(k,l,p,qは任意の整数)

No.66297 - 2020/06/03(Wed) 23:30:29
(No Subject) / パックマン
また(2)の線を引いたところはベクトルaの2乗を移行してベクトルaの2乗で両辺をわってtを求めても大丈夫ですか??
No.66275 - 2020/06/03(Wed) 19:38:19

Re: / X
|↑a|≠0という条件を明記するのであれば
問題ありません。

No.66276 - 2020/06/03(Wed) 19:45:06

Re: / パックマン
わかりました!ありがとうございます!
No.66281 - 2020/06/03(Wed) 20:35:04
(No Subject) / パックマン
線を引いたところなのですが、2じょうして得た解なのにもう一度代入して確かめなくていいのですか?
No.66272 - 2020/06/03(Wed) 19:23:05

Re: / ヨッシー
||≧0 が保証されているので、
 ||=1 と ||^2=1
は同値です。よって、不可逆な変形はしていないことになり、
求まった通りの数値を答えとして問題ありません。

No.66278 - 2020/06/03(Wed) 19:58:08

Re: / パックマン
なるほど!ありがとうございます!
No.66280 - 2020/06/03(Wed) 20:34:06
(No Subject) / 大一(文系)
添付画像の問題の解説をお願いします。
No.66269 - 2020/06/03(Wed) 18:26:11

Re: / ヨッシー
まずは、それぞれの行列について、
detA つまり、ac−b^2 を計算してみてください。
(1) は 1×2−0^2=2 ですね。

No.66270 - 2020/06/03(Wed) 18:38:56

Re: / 大一(文系)
ご回答ありがとうございます。
(1)から順に(i), (iii), (ii), (iii)で合っていますか?

No.66271 - 2020/06/03(Wed) 19:13:09

Re: / ヨッシー
そういうことです。
No.66277 - 2020/06/03(Wed) 19:49:30

Re: / 大一(文系)
ありがとうございました。
No.66283 - 2020/06/03(Wed) 21:05:08
関数 / beta
こちらの問題が分かる方、解答お願いします。
No.66267 - 2020/06/03(Wed) 18:06:06

Re: 関数 / トーカ
s(x)+t(x)のほうはs(x)とt(x)の定義域が同じだという条件ないと成り立たないのでは?
No.66350 - 2020/06/05(Fri) 07:56:07

Re: 関数 / beta
失礼しました、その条件はある前提としての問題です。
No.66371 - 2020/06/05(Fri) 20:54:29

Re: 関数 / トーカ
s(x)とt(x)の定義域をa≤x≤b(a,bは実数)とする。

s(x)は階段関数であるので区間[a,b]をm個の分点を
a=α1≤α2≤・・≤αi≤αi+1≤・・・≤αm=b i=1,2,...m-1とすると
x∈[αi,αi+1]、x∈(αi,αi+1]、x∈[αi,αi+1)、x∈(αi,αi+1)のいずれかに対して s(x)=ci(定数)とかける。

同様にt(x)についても区間[a,b]をn個の分点を
a=β1≤β2≤・・≤βj≤βj+1≤・・・≤βn=b j=1,2,...n-1とすると
x∈[βj,βj+1]、x∈(βj,βj+1]、x∈[βj,βj+1)、x∈(βj,βj+1)のいずれかに対して t(x)=dj(定数)とかける。

次にこのm+n個の分点を小さい順に並べ、新たな分点としたとき x∈[max(αi,βj),min(αi+1,βj+1)]
  x∈(max(αi,βj),min(αi+1,βj+1)]
  x∈[max(αi,βj),min(αi+1,βj+1))
  x∈(max(αi,βj),min(αi+1,βj+1))のいずれかであり
このとき s(x)+t(x)=ci+dj(定数) である。これはs(x)+t(x)が階段関数であることを示している。

No.66388 - 2020/06/06(Sat) 00:08:51

Re: 関数 / beta
ありがとうございました、本当に助かりました
No.66391 - 2020/06/06(Sat) 03:09:28
全22464件 [ ページ : << 1 ... 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 ... 1124 >> ]