[ 掲示板に戻る ]

過去ログ閲覧モード

コラッツ予想について / 成清 愼
https:dongram.web.fc2.com/collatz22021esy.pdf
👆これについてご意見賜りたく宜しくお願い申し上げます。

No.85772 - 2023/07/08(Sat) 20:55:50
漸化式 / がとら
ある会社が他国から部品を輸入して洗濯機を製造している。最初の月に洗濯機を1台生産し、2ヶ月目に2台生産する。毎月、同社はn番目の月にn台の洗濯機を製造するために部品を組み立てる。

a) 最初の n か月に同社が生産した洗濯機の数を表す漸化式を設定せよ.

b) その会社が最初の年に生産する洗濯機の台数は何台か.

c) 会社が最初の n か月間に生産した洗濯機の数を表す明示的な式を求めよ.その公式を求めるために使用した方法に言及し,その手順を明確に示せ.

aの答えは、M(n) = n
bの答えは、M(1) + M(2) + M(3) + ... + M(12) = 1 + 2 + 3 + ... + 12 = (12 * 13) / 2 = 78
cの答えは、M(n) = (n/2) * (1 + n)

でいいですか?

No.85771 - 2023/07/08(Sat) 14:30:35

Re: 漸化式 / IT
問題文が曖昧なので解釈が分かれると思いますが、
a)最初の n か月に同社が生産した洗濯機の数
は1,2,3,...,n-1,n 月目に生産した数の合計だと思います。
「漸化式」とは、例えば第n項と第n-1項との関係を表す式などなので、M(n) = n などを出題者は意図してないと思います。
またM(n) が何を表すのか説明が必要です。

b) 最初の年、1月から生産開始するとは書いてないですが、そうだとすれば、答えは合っていると思います。

c)「その公式を求めるために使用した方法に言及し,その手順を明確に示せ.」これが重要なのでその式だけではダメだと思います。

No.85774 - 2023/07/09(Sun) 11:35:22

Re: 漸化式 / がとら
ありがとうございます。
No.85775 - 2023/07/09(Sun) 21:03:28
漸化式 / ぴーたろ
漸化式ガチャで出てきた問題なのですが、問題を検索したところURLのサイト(ツイッター)が出てきました。答えは√2になるそうなのですが、高校数学(B)まで(?VCはまだ)の段階では解くことは難しい問題でしょうか?
No.85758 - 2023/07/07(Fri) 13:08:43

Re: 漸化式 / ぴーたろ
URLは
https://twitter.com/A43B1PXh21Gx034/status/1528382112599945216
です

No.85759 - 2023/07/07(Fri) 13:09:27

Re: 漸化式 / らすかる
漸化式を解く問題ですから、答えは数列の一般項であり「答えは√2」にはなりません。
元記事にも「答えは√2」ではなく「極限は√2」と書かれていますね。
で、「高校数学(B)」の学習内容がわかりませんのでその範囲内かどうかはわかりませんが、
式を適当にこねくり回せば
a[n+1]={(a[n])^2+2}/(2a[n])
2a[n+1]={(a[n])^2+2}/a[n]
2a[n+1]+2√2={(a[n])^2+2}/a[n]+2√2
2a[n+1]+2√2={(a[n])^2+(2√2)a[n]+2}/a[n]
2(a[n+1]+√2)=(a[n]+√2)^2/a[n]
b[n]=a[n]+√2とおくとb[1]=2+√2であり
2b[n+1]=(b[n])^2/(b[n]-√2)
1/(2b[n+1])=(b[n]-√2)/(b[n])^2
(1/2){1/b[n+1]}=1/b[n]-√2/(b[n])^2
c[n]=1/b[n]とおくとc[1]=1/(2+√2)=1-1/√2であり
(1/2)c[n+1]=c[n]-(√2)(c[n])^2
c[n+1]=-(2√2){(c[n])^2-(1/√2)c[n]}
c[n+1]-1/(2√2)=-(2√2){(c[n])^2-(1/√2)c[n]}-1/(2√2)
c[n+1]-1/(2√2)=-(2√2){(c[n])^2-(1/√2)c[n]+1/8}
c[n+1]-1/(2√2)=-(2√2){c[n]-1/(2√2)}^2
d[n]=c[n]-1/(2√2)とおくとd[1]=1-1/√2-1/(2√2)=1-3/(2√2)であり
d[n+1]=-(2√2)(d[n])^2
よって
d[n]=(-2√2)^(2^(n-1)-1)・d[1]^(2^(n-1))
={-(2√2)d[1]}^(2^(n-1))/(-2√2)
={-(2√2)(1-3/(2√2)))^(2^(n-1))/(-2√2)
=-(3-2√2)^(2^(n-1))/(2√2)
となるので
c[n]=d[n]+1/(2√2)={1-(3-2√2)^(2^(n-1))}/(2√2)
b[n]=1/c[n]=(2√2)/{1-(3-2√2)^(2^(n-1))}
∴a[n]=b[n]-√2=(2√2)/{1-(3-2√2)^(2^(n-1))}-√2=(2√2)/{1-(√2-1)^(2^n)}-√2
のように解けます。

No.85765 - 2023/07/07(Fri) 20:59:50

Re: 漸化式 / IT
「数列a[n]は、収束し極限は√2である」を示すだけなら、もう少し楽に出来ますね。

大学数学だと、「有界な単調(増加・減少)数列は収束する」という定理を使います。
高校数学3の範囲では、厳密性は欠きますが
 y=((x^2)+2)/(2x)とy=xのグラフを使って示すことになると思います。

No.85767 - 2023/07/08(Sat) 08:39:39
気になったのでわかる人がいれば / はんぺ
三角形の中にいる点P(赤)は
三角形の内側にいる限り
各頂点と点P結ぶ線(緑点線)の長さの和は等しくなる?

No.85749 - 2023/07/06(Thu) 19:01:32

Re: 気になったのでわかる人がいれば / けんけんぱ
なりません。
一辺の上に点をもってきます。
その辺の上でも動かすと、対する頂点からの距離は変わります。
辺上なので、辺の2つの頂点からの距離の和は変わりません。

No.85750 - 2023/07/06(Thu) 19:25:08

Re: 気になったのでわかる人がいれば / 関数電卓
> 各頂点と点P結ぶ線(緑点線)の長さの和は等しくなる?
なりません。
P が動くと長さの和も変化し,最小値が存在します。
最小値を与える点を フェルマー点 といいます。
こちら などをじっくりご覧下さい。

No.85751 - 2023/07/06(Thu) 19:25:48

Re: 気になったのでわかる人がいれば / はんぺ
回答ありがとうございます!
一つ賢くなれました!

No.85752 - 2023/07/06(Thu) 20:11:40
高校入試 / かほり
よろしくお願い致します。
No.85746 - 2023/07/06(Thu) 16:23:07

Re: 高校入試 / X
問題は(2)になっていますが、(1)の問題は
全く別の問題ですか?
もし(2)が(1)の続きの問題であれば
(1)もアップして下さい。

No.85748 - 2023/07/06(Thu) 18:32:54

Re: 高校入試 / 関数電卓
図のように α, β を定めると, sinα=1/√5, cosα=2/√5
∠BPQ=α+π/2 だから,△BPQ に余弦定理を適用し (あ)BQ=5
△ABQ に正弦定理を適用し,sinβ=2/(5√5), cosβ=11/(5√5)
∠ACQ=π−(2α+β), ∠AQC=α+β だから,△ACQ に正弦定理を適用し, (い)CQ=1
AC=3/(√5)

No.85755 - 2023/07/06(Thu) 23:13:01

Re: 高校入試 / かほり
ありがとうございます。


(1)は別問題で無関係です。

高校入試の問題なので、それに合わせた解法を教えて頂けると有難いです。

よろしくお願い致します。

No.85757 - 2023/07/07(Fri) 10:21:02

Re: 高校入試 / 関数電卓
> 高校入試の問題
全然見ていませんでした。失礼しました。改めて,中学生の解。

下図のように各点を定める。
△APQ∽△AQR より,AR=4/(√5), QR=2/(√5)
△BQR について三平方の定理より
 BQ^2=BR^2+QR^2=(3√5−4/(√5))^2+(2/(√5))^2=25 ∴ BQ=5
△CQT において,QT=1 だから, QS=x とすると ST=1−x
CS=4/3・QS=2ST より,4/3・x=2(1−x) ∴ x=3/5, ∴ CQ=5/3・x=1

No.85763 - 2023/07/07(Fri) 16:28:08

Re: 高校入試 / らすかる
あまり変わりませんが
AP=√5, AQ=2からPQ=1
Bを通りAQと平行な直線と直線PQの交点をDとすると
△APQ∽△BPDでAP:PB=1:2なのでBD=2AQ=4、DP=2PQ=2
よってDQ=DP+PQ=3なのでBQ=5
直線PQと直線ACの交点をEとしてCからQEに垂線CHを下すと
△CQH∽△BQDからQH=(3/4)CH
△CHE∽△AQPからEH=(1/2)CH
よって1=PQ=QH+EH=(3/4+1/2)CH=(5/4)CHとなるのでCH=4/5となり
CQ=(5/4)CH=1

No.85769 - 2023/07/08(Sat) 13:38:11

Re: 高校入試 / かほり
みなさま、ありがとうございました。
理解できました。
また、よろしくお願い致します。

No.85777 - 2023/07/10(Mon) 08:40:28
(No Subject) / r
x^2+y^2=4の微分です
関数=関数の両辺を微分するのはわかります。この場合はなぜ両辺を微分できるのでしょうか。何が起きてるのかわかりません。

No.85745 - 2023/07/06(Thu) 12:53:37

Re: / ast
> 関数=関数の両辺を微分するのはわかります
というのが本当なのであれば,
 「"任意の x に対して f(x)=4 となる定数函数 f=f(x)" および x,y=y(x) に関する等式
   x^2+y^2=f
 の両辺を x で微分する」
ことに何らかの疑問があるとは考えにくいのですが, 何がそんなに引っかかりますか?

No.85747 - 2023/07/06(Thu) 16:27:31

Re: / r
y(x) とはどういうことでしょうか。
No.85753 - 2023/07/06(Thu) 20:28:41

Re: / ast
「どういうこと」ってのがどういうことか分からないんだけど, じゃあ
 「"任意の x に対して f(x)=4 となる定数函数 f(x)" および x,y=g(x) に関する等式
   x^2+g(x)^2=f(x)
 の両辺を x で微分する」
に訂正しておく (とりあえず, いわゆる「記号の濫用」を避けた形にしておいたけれど, べつにそれはもとが間違ってるという意味ではない).
# もし「全然意図と違う (記号の濫用くらいわかる!)」てのならもうちょっと明確に.

No.85754 - 2023/07/06(Thu) 21:40:11

陰関数の微分 / 黄桃
別の考え方を示しておきましょうか。
以下の2つのことを考えてみてください。

その1
y=2x+1 という関数を
y-2x-1=0  や y-1=2x
と書き換えて、両辺をxで微分してはいけないのでしょうか。
いけないならなぜでしょうか。

その2
x^2+y^2=4
y^2=4-x^2
y=±√(4-x^2)
以上のうち、両辺をxで微分してはいけないものがあるのでしょうか。
あるならなぜでしょうか。

#x^2+y^2=4 におけるyは、この方程式で定まるxの関数
#ということが理解できてないように思います。
#xを決めればこの方程式を解いてyが決まります。
#この場合は2つのyが決まりますが、どちらでも構いません。
#解けばy=±√(4-x^2) となるから、2つの関数をまとめて書いた形です。
#このように方程式で定義される関数を陰関数と呼びます。
#そして元の方程式は関数として等しい、という意味にもなります。

No.85756 - 2023/07/07(Fri) 07:31:39

Re: / r
x^2という関数とg(x)^2という合成関数を足した合成関数ということでしょうか。
No.85760 - 2023/07/07(Fri) 13:13:11

Re: / r
ではなぜ2x=4の両辺は微分できないのでしょうか。2=0になっちゃうので。2xという関数とg(x)=0という関数ととらえると両辺が関数になると思うのですが。
No.85761 - 2023/07/07(Fri) 13:30:40

Re: / GandB
> ではなぜ2x=4の両辺は微分できないのでしょうか。

 何を言っているのかさっぱりわからんwwwwwwwwwwww

  2x = 4 ……(*)
という等式について
  左辺を f(x) = 2x (x の1次関数)
  右辺を g(x) = 4 (x の定数関数)
と見なした場合、(*)を満たすのは、つまり
  f(x) = g(x)
が成り立つのは x = 2 のときだけで、それ以外の x では
  f(x) ≠ g(x)
なのだから(*)の両辺を微分することに何の意味もない。当たり前のことだが、xの全域にわたって常に
  f'(x) ≠ g'(x)

No.85764 - 2023/07/07(Fri) 20:10:56

Re: / 黄桃
結局のところ、関数として等しい、ということが理解できていないようです。

> 関数=関数
は、この文脈では関数として等しい、という意味であって、二つの関数のグラフが交わる、という意味ではありません。

> 方程式で定まるxの関数
も理解できてないようなので、もう少し説明します。これでわからなければ私の力の及ぶところではありません。

x^2+g(x)^2=4 でも x^2+y^2=4 でも書き方はなんでもいいですが、x^2+g(x)^2=4 に決めておきましょうか。
g(x)はこの方程式とは別に与えらえたxの関数ではなく、「この方程式で定まる」関数です。

x=0ならg(x)=±2, x=1 ならg(x)=±√3 等々、
xの値を決めるとyの値が1つだけ決まるわけではないので、厳密には関数ではないですが、
(x,g(x))のペアをプロットしていけば、グラフが書け、そのグラフのうち、
g(0)=2 というようにプラスの解だけ選べば g(x)=√(4-x^2)という関数で、
g(0)=-2 のようにマイナスの解を選べばg(x)=-√(4-x^2)という関数になってます。

だから、この関係をみたす (x,g(x))の組は(±どちらでも)必ず x^2+g(x)^2=4 という方程式を満たします。
別のいい方をすれば、関数として等しい、とは、定義域のどんなxを代入しても等しい、ということになります。

>2x=4
という方程式にはxだけしか変数はありません。xにどんな値を代入しても等号が成立するなら関数として等しいですが、そうではありません。
だから、これは関数として等しい、というわけではありません。
もちろん、定義域をx=2 だけに限定すれば正しいですが、それでは今度は微分が考えられません。

No.85766 - 2023/07/08(Sat) 00:08:24

Re: / r
yがこの方程式で定まる関数だということはわかりました。左辺はx^2+y^2ですが、(x^2+y^2)'ということはx^2+y^2を一つの合成関数として微分しているということですよね。
No.85768 - 2023/07/08(Sat) 12:11:59

Re: / 黄桃
>x^2+y^2を一つの合成関数
y^2は合成関数(y=f(x)とh(x)=x^2として、h(f(x)))ですが、x^2+y^2全体は一つの合成関数というよりは、2つの関数の和(そのうち1つは合成関数)でしょうか。

いずれにせよ、x^2+y^2 全体として1つのxの関数、として微分しているのは間違いありません。

No.85773 - 2023/07/09(Sun) 11:22:48

Re: / r
ありがとうございました
No.85778 - 2023/07/10(Mon) 10:28:18
組み合わせ(大学入試 / ムスカ
1-2問まで自分の答案を作りました。これらは正しいですか?

1.あなたが大学で専攻する分野に関連する11科目のうち、3科目だけをカバーする奨学金を受け取ったとします。また、11コースのうち1コース(英語)が必修科目である場合、残りの2コースは何通りの選択が可能でしょうか。どのようにしてその答えを導き出したか、説明してください。


C(11, 3) = 11! / (3! * 8!)=165, C(10, 2) = 10! / (2! * 8!)=45より
したがって、大学の専攻に関連する11科目のうち3科目を選択する方法は165通りあり、残りの10科目のうち2科目を選択する方法は、1科目(英語)を必修とすれば45通りある.



2.新築のアパートには30人のクラブ会員がいる。クラブは、7 名のクラブ会員から成るスポーツ委員会の設立を計画しています。何種類のスポーツ委員会が考えられますか。スポーツ委員会に、クラブ会員の中から選出された会計担当者を含めることが必須である場合、いくつの委員会が考えられますか。

C(30, 7) = 30! / (7!(30-7)!) = 30! / (7! * 23!) = (30 * 29 * 28 * 27 * 26 * 25 * 24) / (7 * 6 * 5 * 4 * 3 * 2 * 1) = 2035800

したがって、2035800通りのスポーツ委員会が存在することになる。

C(29, 6) = 29! / (6!(29-6)!) = 29! / (6! * 23!) = (29 * 28 * 27 * 26 * 25 * 24) / (6 * 5 * 4 * 3 * 2 * 1) = 84,070

したがって、スポーツ委員会に部員の中から選ばれた会計担当を入れることを義務付けると、594,914の委員会が可能である

No.85743 - 2023/07/06(Thu) 05:04:42
(No Subject) / 5年生
このグラフを描きたいのですがどのようになりますか?
No.85740 - 2023/07/05(Wed) 22:05:06

Re: / GandB
 まあこんな感じ(笑)
No.85741 - 2023/07/06(Thu) 00:26:16

Re: / らすかる
周期関数なので左右もう少し書いた方がよいのでは?
No.85742 - 2023/07/06(Thu) 03:57:54

Re: / GandB
 そうですね。
No.85744 - 2023/07/06(Thu) 06:33:44
式変形 / JUJU
写真の式はどのように変化しているか教えてください。
オイラーの公式?ぽいなと自分は思いましたがどのように使うかわかりません。

No.85737 - 2023/07/05(Wed) 18:25:55

Re: 式変形 / ast
オイラーの公式がわかるなら, そこからただちに
cos(x)=(e^(jx)+e^(-jx))/2,
sin(x)=(e^(jx)-e^(-jx))/(2j)
もわかるはずだから考えるまでもなかろう.

No.85738 - 2023/07/05(Wed) 18:43:40

Re: 式変形 / JUJU
そのままでした。
ありがとうございます。

No.85739 - 2023/07/05(Wed) 22:02:43
(No Subject) / ジャム
映画2本、ミュージックビデオ4種類、ドキュメンタリー5種類のDVDを棚に並べる。2つの映画DVDが一緒になる並べ方の数は?

答えは10!*2であってますか?

No.85728 - 2023/07/04(Tue) 06:08:40

Re: / X
それで問題ありません。
No.85729 - 2023/07/04(Tue) 06:48:43

Re: / ジャム
ありがとうございます
No.85733 - 2023/07/05(Wed) 03:31:26
電気一般 / S
解答合っているか教えてもらいたいです、間違っている場合は解答教えてもらえると助かります。
No.85726 - 2023/07/03(Mon) 21:12:32

Re: 電気一般 / X
過程、結果共に問題ありません。
No.85730 - 2023/07/04(Tue) 06:49:58

Re: 電気一般 / S
ありがとうございます。
No.85731 - 2023/07/04(Tue) 14:25:16
電気一般 / S
解答合っているか教えてもらいたいです、間違っている場合は解答教えてもらえると助かります。
No.85721 - 2023/07/03(Mon) 19:03:54

Re: 電気一般 / X
計算式の下から3行目の左辺が間違えています。
20をかけるところが10をかけたことになってますよ。

No.85722 - 2023/07/03(Mon) 19:29:57

Re: 電気一般 / X
こちらの計算では50[℃]になりました。
No.85723 - 2023/07/03(Mon) 19:35:06

Re: 電気一般 / S
無事解決しました、ありがとうございます。
No.85725 - 2023/07/03(Mon) 21:11:13
(No Subject) / r
この式変形がわかりません。
No.85717 - 2023/07/03(Mon) 15:39:59

Re: / らすかる
(log[a]|x|)'=(log|x|/loga)'
=(1/loga)(log|x|)'
=(1/loga)(1/x)
です。
(1/logaは定数なので微分の外に出せます)

No.85718 - 2023/07/03(Mon) 16:29:55

Re: / r
定数であることに気づきませんでした。ありがとうございます。
No.85719 - 2023/07/03(Mon) 18:04:04
2次元と3次元 / √
「正三角形」の「内接円」と「外接円」の半径の比は
 1:2

 そして、正三角形の高さは
「内接円の半径」+「外接円の半径」


「正四面体」の「内接球」と「外接球」の半径の比は
 1:3

そして、正四面体の高さは
「内接球の半径」+「外接球の半径」

で合っていますでしょうか?

No.85709 - 2023/07/02(Sun) 21:46:41

Re: 2次元と3次元 / らすかる
4行目の
「内接球の半径」+「外接球の半径」

「内接円の半径」+「外接円の半径」
の意味で、次の行の
「正四面体」の「内接球」と「外接球」の比は

「正四面体」の「内接球」と「外接球」の半径の比は
の意味なら、合ってます。

No.85711 - 2023/07/02(Sun) 23:49:36

Re: 2次元と3次元 / √
らすかるさん

有難うございます。
らすかるさんの、ご指摘どおりです。

お恥ずかしい限りです。。。

No.85713 - 2023/07/03(Mon) 00:05:44

Re: 2次元と3次元 / √
恥ずかしさのあまり、
大元の投稿を修正しておきました。

No.85714 - 2023/07/03(Mon) 00:13:01
算数 / たろちゃん
解き方のイメージがわかりません。解説をお願いします。
No.85705 - 2023/07/02(Sun) 19:40:17

Re: 算数 / IT
顧客訪問件数を1件増やすためには、顧客訪問時間を何時間増やせば良いですか?(社内業務時間を何時間減らせば良いですか?)

システム導入により訪問準備時間は1件あたり何時間になりましたか?
システム導入後5件の準備時間は何時間ですか?

5件の準備時間と現在のその他業務時間と合わせると、社内業務時間は何時間になりますか?

No.85706 - 2023/07/02(Sun) 20:51:25

Re: 算数 / たろちゃん
顧客訪問件数を1件増やすためには、顧客訪問時間を何時間増やせば良いですか?(社内業務時間を何時間減らせば良いですか?)
→社内業務時間を1時間減らせば良い。


システム導入により訪問準備時間は1件あたり何時間になりましたか?
→こちらが難しいです。

システム導入後5件の準備時間は何時間ですか?

5件の準備時間と現在のその他業務時間と合わせると、社内業務時間は何時間になりますか?

No.85707 - 2023/07/02(Sun) 21:32:48

Re: 算数 / IT
>システム導入により訪問準備時間は1件あたり何時間になりましたか?
> →こちらが難しいです。


システム導入前は、訪問準備時間は1件あたり何時間でしたか?

No.85710 - 2023/07/02(Sun) 21:55:57

Re: 算数 / たろちゃん
0.3時間でしょうか?
No.85724 - 2023/07/03(Mon) 19:47:16

Re: 算数 / IT
そうですね。
では、システム導入により訪問準備時間は1件あたり何時間になりましたか?
システム導入後5件の準備時間は何時間ですか?

No.85727 - 2023/07/04(Tue) 00:07:31

Re: 算数 / たろちゃん
そこが難しいです。
No.85736 - 2023/07/05(Wed) 17:32:31
(No Subject) / S
解答合っているでしょうか?
間違っている場合は解答教えてもらえると助かります。

No.85702 - 2023/07/02(Sun) 16:30:56

Re: / 物理大好き
最後の1行は間違い(不要です)
Icd= 10Aでおしまいです。

No.85704 - 2023/07/02(Sun) 19:20:29

Re: / S
ありがとうございます
No.85720 - 2023/07/03(Mon) 19:01:59
数学 I I軌跡の質問 / ユミ
kを実数とする。kが全ての実数を動くとき、
x^2+y^2− 2kx-2x−4ky−4y+ 10k+5 = 0の描く軌跡を求めよ。

宜しくお願い致します。

No.85698 - 2023/07/02(Sun) 14:38:08

Re: 数学 I I軌跡の質問 / 関数電卓
 x^2+y^2−2kx−2x−4ky−4y+10k+5=0 …(1)
変形して
 (x−(k+1))^2+(y−2(k+1))^2=5k^2 …(2)
(2)は
 中心 (k+1,2(k+1), 半径 (√5)k の円群
だから
個々の k に対する (x, y) の軌跡は下図。
全ての k に対して(1)(2)が成り立つのは 点 (1, 2) のみ。

No.85708 - 2023/07/02(Sun) 21:37:00

Re: 数学 I I軌跡の質問 / らすかる
各kに対する軌跡は関数電卓さんが書かれたような図形になりますので、
「kが全ての実数を動くときのx^2+y^2-2kx-2x-4ky-4y+10k+5=0の描く軌跡」

「xy平面全体から直線x+2y=5を除き点(1,2)を加えた領域」
になると思います。

No.85712 - 2023/07/03(Mon) 00:02:12

Re: 数学 I I軌跡の質問 / ユミ
関数電卓様、らすかる様、返答ありがとうございます。

私は、kについて整理し、kのとり得る値で場合分けをして、(x,y)の満たす条件を調べるという逆像法で求めようとしてみました。
(i) k=0 のとき、(x,y)=(1,2)
(ii) k>0 のとき、・・・ x+2y>5
(iii) k<0 のとき、・・・ x+2y<5
 みたいな流れで場合分けしたら、らすかるさんの解が得られるのですが、この考えであってますか。
 他に、別解や注意すべき着目点があったらアドバイス頂けると有難いです。

No.85715 - 2023/07/03(Mon) 00:27:25

Re: 数学 I I軌跡の質問 / 黄桃
この問題の場合、逆像法だと、
f(x,y)=x^2+y^2-2x-4y+5,
g(x,y)=2x+4y-10
とおけば、x,yを固定した時kについての1次方程式
f(x,y)=g(x,y)k
が解を持つ条件、となります。
この問題では、f(x,y)≧0なので、kが0かどうかで場合分けしてもいいですが、
f(x,y)≧0 とは限らない場合にも使える方法、つまり
g(x,y)=0 かどうか、
で場合分けをして
g(x,y)≠0 の時は、(k=f(x,y)/g(x,y) と求まるので)x,yは何でもよい(つまり、直線 x+2y=5 上にないすべての(x,y)はOK)
g(x,y)=0 の時は f(x,y)=0 (つまり、x+2y=5 かつx^2+y^2-2x-4y+5=0 をみたす(x,y)はOK)f
の2つを合わせて答とする方が簡単でしょう。

No.85716 - 2023/07/03(Mon) 08:50:50
空間ベクトル / K.S
正四面体であることの証明ですが、

その重心と、外接球の中心が一致することがベクトル式で示されれば、証明できたことになりますか?

証明のし方の例を書いてみましたが、いかがでしょうか?

教えてくださいm(_ _)m

No.85697 - 2023/07/02(Sun) 14:23:41

Re: 空間ベクトル / らすかる
多分
「四面体の外接球の中心と重心が一致すれば、その四面体は正四面体」
を別途証明する必要があると思います。

No.85735 - 2023/07/05(Wed) 12:06:21
どうやったらこのかたちになりますか。 / 彩
環境依存文字で、文字がうまく表現されなかったので、再度投稿します。失礼いたしました。

参考書に書いてあった逆行列についての箇所です。
1から2になる過程がよくわからないです。
教えていただけますでしょうか。

No.85695 - 2023/07/02(Sun) 12:58:18

Re: どうやったらこのかたちになりますか。 / ast
丸1の (左側の連立式から) w を消去したのが丸2の1番目, 同様に u を消去したのが同2番目, 同じく (右側の連立式から) z を消去したのが同3番目, v を消去したのが同4番目.

結局必要なことは中学数学の連立一次方程式で変数を消去するあたりの話 (「代入法」とか「加減法」とか大仰な名前のついた変数を減らす方法を覚えたはず. ここでは「加減法」がわかってればいい.)
# 高校数学なのか, あるいは大学でやる線型代数の話だとしても (行列や線型性の概念などを用いて
# 記法や考えたかを整理する部分についてあらそれなりに難しい部分もあるだろうが
# そういうの抜きの)「計算だけ」の観点で見ると結局中学校でまなぶ連立一次方程式の話でしかない
# ってことが多々あるので, 計算に詰まる人は中学向けの教科書参考書が意外と救世主になることも
# ふつうにあるんだけども, まあそういう話するとバカにされたって怒る人もいるから
# そうそう大っぴらに言わないけど, でも実際そうなんだから困る.

No.85696 - 2023/07/02(Sun) 13:52:53

Re: どうやったらこのかたちになりますか。 / GandB
> 参考書に書いてあった逆行列についての箇所です。
なのだから丸1を行列で表して考えればよい。

訂正
 一番最後の ad-bc を (ad-bc) に変更。

No.85699 - 2023/07/02(Sun) 14:39:37

Re: どうやったらこのかたちになりますか。 / 彩
助かりました。丁寧な返信ありがとうございます。
No.85700 - 2023/07/02(Sun) 15:29:45
どうやってこの形になりますか / 彩
参考書に書いてあった逆行列についての箇所です。
?@から?Aになる過程がよくわからないです。
教えていただけますでしょうか。

No.85694 - 2023/07/02(Sun) 12:55:27
全22627件 [ ページ : << 1 ... 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ... 1132 >> ]