[ 掲示板に戻る ]

過去ログ閲覧モード

共通解の問題 / 奈津美
(2+i)x^2 + (5+i)x -3(1+2i)=0の実数解は?
No.19560 - 2012/12/27(Thu) 12:37:41

Re: 共通解の問題 / ヨッシー
実部、虚部に分けると、
 (2x^2+5x−3)+(x^2+x−6)i=0
よって、
 2x^2+5x−3=0 → (2x-1)(x+3)=0
 x^2+x−6=0  → (x-2)(x+3)=0
両者を満たすのは、x=-3

No.19562 - 2012/12/27(Thu) 14:01:12

Re: 共通解の問題 / 奈津美
ありがとうございました!
No.19579 - 2012/12/28(Fri) 13:52:48
確率 / ジョセフ
動転Pは原点(0,0)から出発して、座標平面上の(m.n)(m,nは整数)の上を動く。Pが点(m.n)にいるとき、サイコロを振って出た目が1または2ならば点(m+1、n)へ、3または4ならば点(m-1,n)へ、5ならば点(m,n+1)へ、6ならば点(m,n-1)へ進む。
(1)サイコロを2回振った後、Pが点(1,1)に到達する確率
(2)サイコロを4回振った後、Pが点(2,2)に到達する確率
(3)サイコロを4回振った後、Pが点(1,1)に到達する確率
以下自分の解答
1または2が出る確率・・・1/3・・・?@
3または4が出る確率・・・1/3・・・?A
5が出る確率・・・1/6・・・?B
6が出る確率・・・1/6・・・?C
(1)?@が1回、?Bが1回でればよいので2!×(1/3)×(1/6)=1/9
(2)?@が2回、?Bが2回でればよいので(4!/2!2!)×(1/3)^2×(1/6)^2=1/9
(3)?@が2回、?Aが1回、?Bが1回出る or ?@が1回、?Aが2回、?Cが1回出る場合をそれぞれ考えると、
(4!/2!)×(1/3)^2×(1/3)×(1/6)+(4!/2!)×(1/6)^2×(1/6)=29/27となったのですが
正直よくわかりません。
解き方も点の座標がもっと複雑になったときに対処できないと思います。
どうやって解いたらいいんでしょうか?
また、答がないので誰か分かる方教えて下さい。お願いします。

No.19556 - 2012/12/27(Thu) 05:26:08

Re: 確率 / らすかる
(2)は式は正しいですが計算が正しくありません。
(3)は式も計算も正しくありません。
「?@が1回、?Aが2回、?Cが1回」のうちの「?@が1回」の分を掛け忘れています。

> 解き方も点の座標がもっと複雑になったときに対処できないと思います。
例えば「サイコロを10回振った後、Pが点(1,1)に到達する確率」のような
問題ならばそれだけ手間のかかる計算をするしかないと思いますので、
そのような問題は出ません。

No.19558 - 2012/12/27(Thu) 06:16:32
数と式 / ジョセフ
放物線y=x^2-2mx+m+6の値が0≦x≦8の範囲にあるとき、定数mの値の範囲および頂点のy座標の値の範囲を求めよ。
mの値は0≦m≦8でいいんでしょうか?y座標の値の範囲と言うのがよく分かりません。教えて下さい。

No.19555 - 2012/12/27(Thu) 04:12:31

Re: 数と式 / らすかる
「放物線y=x^2-2mx+m+6の値が0≦x≦8の範囲にある」は意味が通じません。
問題がおかしいです。

No.19557 - 2012/12/27(Thu) 05:59:40
難問 / 受験生
中心の位置および半径を変えながら移動する円がある.時刻t(t≧0)における中心の座標は(at+1,0),半径はr/√at+1である.ただし,aおよびrはtに無関係な正の定数とする.
このとき,点A(2,1)がいかなる時刻t(≧0)においても,この移動する円の外側にあるためのrの範囲を求めよ.また,rがそのような1つの値であるときに,点Aから動円に2本の接線l,mを引いたとき,lとmのなす角を2θ(0<θ<π/2)とする.θを最大にするtを求めよ.

No.19554 - 2012/12/27(Thu) 03:00:53

Re: 難問 / ヨッシー
√at+1 は、√(at+1) と解釈します。
円の式は (x-at-1)^2+y^2=r^2/(at+1) であるので、これに
(2,1) を代入して、
 (1-at)^2+1>r^2/(at+1)
t≧0 においては at+1>0 なので、
 (a^2t^2-2at+2)(at+1)>r^2
f(t)=(a^2t^2-2at+2)(at+1)=a^3t^3−a^2t^2+2 とおきます。
tで微分して、
 f'(t)=a^2t(3at-2)
となり、f(t) は、t=0 で極大値 2、t=2/3a で極小値50/27 を取ります。
よって、50/27>r^2 であれば、いかなる時刻t(≧0)においても
 (a^2t^2-2at+2)(at+1)>r^2
となります。
 0<r<(5√6)/9

円の中心をB、半径をcとすると、
 sinθ=c/AB
となります。0<θ<π/2 において sinθ(>0) は単調増加であるので
tan^2θ=c^2/AB^2 が最大の時θも最大になります。
 c^2/AB^2=r^2/f(t)
となり、t≧0 で f(t) が最小となる t=2/3a でθは最大となります。

No.19559 - 2012/12/27(Thu) 06:57:37
整数問題 / 高2
(1)5で割り切れない正の整数mに対し,m^4−1は5で割り切れることを示せ.
(2)正の整数nに対し,n^nを5で割った余りをf(n)で表す.f(n+20)=f(n)を示せ.

No.19549 - 2012/12/26(Wed) 21:44:46

Re: 整数問題 / らすかる
(1)
5で割った余りが1のとき m-1は5で割り切れる
5で割った余りが2のとき m-2は5で割り切れる
5で割った余りが3のとき m+2は5で割り切れる
5で割った余りが4のとき m+1は5で割り切れる
従ってmが5で割り切れないとき (m-2)(m-1)(m+1)(m+2) は5で割り切れるので
(m-2)(m-1)(m+1)(m+2)+5(m^2-1)=m^4-1 も5で割り切れる

(2)
(n+20)^(n+20)
=Σ[k=0〜n+20](n+20)Ck・20^k・n^(n+20-k)
=n^(n+20)+5t (∵k>0の項は5で割り切れる)
=n^n・n^20+5t
=n^n+n^n・(n^20-1)+5t
=n^n+n^n・(n^4-1)(n^16+n^12+n^8+n^4+1)+5t
=n^n+5s (∵nが5の倍数のときn^nが5の倍数、そうでないときn^4-1が5の倍数)
∴f(n+20)=f(n)

No.19553 - 2012/12/27(Thu) 01:29:55
相加相乗平均がうまくつかえない / ボルト
内接円の半径が1で、AB=ACである二等辺三角形ABCの辺BCの中点をMとし、h=AM(h>2)とおく。
三角形ABCを直線AMのまわりに回転して得られる円錐について
(1)円錐の体積Vをhを用いて求めよ。
(2)にVの最小値を求めよ。
(1)はV=(π/3)・{h^2/(h-2)}となりました。
(2)でVが最小値になるためにはh^2/(h-2)が最小であればよいので
h^2=h(h-2)+2hより
h^2/(h-2)=h+{2h/(h-2)}=(h-2)+{2h/(h-2)}+2と変形したのですが分母分子に文字が含まれているので相加相乗平均を利用できません。
どうすればいいんでしょうか?教えて下さい。

No.19547 - 2012/12/26(Wed) 21:35:10

Re: 相加相乗平均がうまくつかえない / X
h/(h-2)=1+2/(h-2)
と変形しましょう。

No.19550 - 2012/12/26(Wed) 22:02:19

Re: 相加相乗平均がうまくつかえない / ボルト
2度変形を行うんですね!
おかげで答にたどりつくことができました。
ありがとうございました。

No.19551 - 2012/12/26(Wed) 22:37:05

Re: 相加相乗平均がうまくつかえない / IT
> 2度変形を行うんですね!
h^2/(h-2)=[{(h-2)+2}^2]/(h-2)
=[{(h-2)^2} + 4(h-2) +4]/(h-2)
=(h-2) + 4 + {4/(h-2)}
という手順もあります。

No.19552 - 2012/12/26(Wed) 22:51:37
対数関数 / ボルト
x,yが不等式log[3](5-x)+2log[3]{√(5+x)}+2log[3]{√(3/y)}>1・・・?@を満たしている。
整数x,yが?@を満たすとき、2x+yの最大値を求めよ。

2x+y=kとしたとき?@と接する点は(1,24)
よってk=2・1+24=26となり2x+yの最大値は26となったのですが答が分かりません。教えて下さい。

No.19540 - 2012/12/25(Tue) 17:49:18

Re: 対数関数 / X
(1)の不等号の下に等号があるのであればそれで
問題ありませんがそうではありませんので
接点は(1)の範囲に含まれません。
但し、候補を絞り込むことはできます。

(1)の境界線である
y=25-x^2
と接するとき
k=26
ですので求めるkの最大値k_maxに対し
k_max<26
ここで
k=26
のときの
直線:2x+y=k (A)

k=25
のときのそれに平行移動することを考えます。
このとき上記の接点である
点(1,24)

点(1,23)
に平行移動しますが、この点は(1)に含まれますので
題意を満たします。

よって求める最大値は25となります。

No.19542 - 2012/12/25(Tue) 18:08:26

Re: 対数関数 / ボルト
ありがとうございました
No.19548 - 2012/12/26(Wed) 21:35:37
数2 / なら
一辺の長さが1の正方形ABCの外部に、三角形PQRを∠QPR=π/2,∠PQR=π/3であり、辺PQ上に点Aが、辺QR上に点Bが、辺RP上に点Cがあるようにつくる。
∠PAC=Θとする。
(1)AQの長さをθを用いて表せ
(2)四角形AQRCの面積をSとする。Sをθを用いて表し、Sの最大値を求めよ。
AQ=(2/√3)sinθ
BQ=cosθ+(1/√3)sinθ
RC=2cosθ+(2/√3)sinθ
RB=cosθ+√3sinθ
△ABQ=(sinθcosθ/2)+(sin^2θ/√3)
△ABC=√3/4
△BCR=(1/2)+(√3/2)sinθcosθ+(1/2√3)sinθcosθ
となったのですが面積を求めようとすると
合成ができません。
たぶんどっかで間違えていると思うのですが誰か分かる方教えて下さい。お願いします。

No.19537 - 2012/12/25(Tue) 16:55:23

Re: 数2 / X
>>正方形ABC
意味が不明です。問題文は正確にアップして下さい。

No.19541 - 2012/12/25(Tue) 17:49:37

Re: 数2 / ヨッシー
RCの計算が違うようです。
No.19543 - 2012/12/25(Tue) 18:27:26
積分の応用 / なら
円C1:x^2+y^2=1上の点Pから放物線C2:y=x^2+5に引いた2本の接線とC2で囲まれた部分の面積をSとする。PがC1上を動くときのSの最大値を求めよ。
2つの接点をそれぞれA,Bとし接点のx座標をそれぞれα、β(α<β)とする。
点A,Bにおける接線は
y=2αx-α^2+5・・・?@
y=2βx-β^2+5・・・?A
点Pのx座標は(α+β)/2なので
S=∫[α→(α+β)2]{(x^2+5)-(2αx-α^2+5)}dx +∫[(α+β)/2→β]{(x^2+5)-(2βx-β^2+5)}dx
これでやるとS=0になってしまいました。
どうしてなんでしょうか?
また、このやり方でいくと基本対称式が出てくるので解と係数の関係を使ってα+β、αβの値を出す必要があると思うんですけど無理な気がします。
どうすれば解けるんでしょうか?
2つの疑問点について教えて下さい。お願いします。

No.19535 - 2012/12/25(Tue) 16:52:10

Re: 積分の応用 / X
一つ目の疑問)
計算を間違えているものと思います。
S=∫[α→(α+β)2]{(x-α)^2}dx+∫[(α+β)/2→β]{(x-β)^2}dx
=(1/3){(β-α)/2}^3-(1/3){(α-β)/2}^3
=(1/12)(β-α)^3 (A)
となります。
二つ目の疑問)
初めから考え直してみます。
C2上の点(t,t^2+5)における接線の方程式は
y=2tx-t^2+5 (B)
一方条件から点P(cosθ,sinθ)(0≦θ<2π)
と置けるので(B)がPを通ることから
sinθ=2tcosθ-t^2+5
整理して
t^2-2tcosθ+sinθ-5=0 (C)
(C)をtの二次方程式と見たときの解がα、βなので
解と係数の関係より
α+β=2cosθ (D)
αβ=sinθ-5 (E)
(D)(E)を(A)に用いてα、βを消去し、Sをθの関数として
処理します。


或いはP(X,Y)と置き、上記と同じ方針でSをX,Yを用いて表し
その式と
X^2+Y^2=1
とを連立してXを消去して得られるYの二次方程式が
実数解を持つ条件から解の判別式についての
Sの不等式を立てる
という方針もあります。

No.19544 - 2012/12/25(Tue) 18:45:21
公式に関する質問 / Xex
?@三角関数の和⇔積の公式がどうしても覚えられないので、公式の導き方があれば教えてください。
?A部分分数分解するときに分母の式の形によってどのように分解できるかの判別法ってありますか? 例)(cx^2+dx+e)/{(x+a)^2(x+b)}=p/(x+a)+q/(x+a)^2+r/(x+b) p,q,rを係数比較で探す。

No.19534 - 2012/12/25(Tue) 16:03:55

Re: 公式に関する質問 / ヨッシー
(1)
加法定理
 sin(α+β)=sinαcosβ+cosαsinβ
 sin(α−β)=sinαcosβ−cosαsinβ
各辺足して
 sin(α+β)+sin(α−β)=2sinαcosβ
上から下を引いて
 sin(α+β)−sin(α−β)=2cosαsinβ
などです。cos の加法定理も同様です。
この辺の導出は、教科書でこの公式が書かれている直前にあるはずです。

部分分数は、必ずこうという決まりはありませんが、少なくとも、
元の式の分母の因数の組み合わせなので、いくつか試すにしても、
そんなに多くにはならないでしょう。

No.19538 - 2012/12/25(Tue) 17:05:18

Re: 公式に関する質問 / Xex
?@そうすればよかったのか!!解決しました!
?A地道にやるしかないのですね。回答ありがとうございます。

No.19539 - 2012/12/25(Tue) 17:09:33
数列 / sfd
3番の問題がわかりません
答えは、1です
よろしくお願いします

No.19530 - 2012/12/25(Tue) 13:50:10

Re: 数列 / ヨッシー
求める合計をSとすると、
 S=r^4+r^5+・・・+r^(n-1)  ・・・(1)
両辺にrを掛けて、
 rS=r^5+r^6+・・・+r^(n-1)+r^n ・・・(2)
(2)−(1)
 (r-1)S=r^n−r^4
よって、
 S=(r^n−r^4)/(r-1)
あとは、r^4 でくくって、選択肢に合うものを見つけてください。

こちらでは、文字が小さくて、どれが正解か分かりません。

確かに、(1) っぽいですが。

No.19533 - 2012/12/25(Tue) 14:32:19
平面図形 / 梨夏
BC=5、CA=12、角ACB=90゚の直角三 角形がある。
辺AB上に点P、辺AC上に点Qをとり 、
直線PQと直線BCの交点をRとする。

?@AP=5、AQ=10のとき線分CRはア/イ

メネラウスの定理を利用したら
7/5になったんですがあっているでし ょうか?

?ACQ=4のとき4点BCQPは半径rの円 周上にある。
半径r、および線分APの長さを求めると
r=√ウエ/オ、AP=カキ/クケ

また直線ARと直線BQの交点をNとす るとき
三角形ACRおよび三角形AQNの面積 をそれぞれ
S1、S2とすると S2=(100/コサシ) S1

No.19528 - 2012/12/25(Tue) 12:55:03

Re: 平面図形 / ヨッシー
AB=13 は、事前に求めておきます。

(1)7分の5 であれば 5/7 と書きます。

(2)BQはこの円の直径になるので、
 BQ=√(25+16)=√41 なので、r=√41/2
 ∠BPQ=90°になり、△ABC∽△AQP であるので、
 AP=8×12/13=96/13

 △ABC∽△RBP より
  BR=BP×13/5=73/5
 よって CR=48/5
 チェバの定理より
  AN/NR=50/73
 よって、
  △AQN=△ACR×(AQ/AC)×(AN/AR)
   =△ACR×2/3×50/123=(100/369)△ACR

No.19532 - 2012/12/25(Tue) 14:11:38

Re: 平面図形 / 梨夏
ありがとうございました_(..)_
No.19561 - 2012/12/27(Thu) 12:38:50
数?T / 奈津美
a+b=1,ab=2,x+y=3,xy=4である。
X=ax+by,Y=ay+bxとするとき
X+Y=ア、XY=イウエ、X^2+Y^2=オカ

対照式を利用するのかなーっと思ったものの
結局解けませんでした。

解説お願い致します!

No.19526 - 2012/12/25(Tue) 12:00:43

Re: 数?T / らすかる
代入して地道に計算しましょう。
X+Y=(ax+by)+(ay+bx)=a(x+y)+b(x+y)=(a+b)(x+y)
XY=(ax+by)(ay+bx)=(a^2+b^2)xy+ab(x^2+y^2)={(a+b)^2-2ab}xy+ab{(x+y)^2-2xy}
X^2+Y^2=(X+Y)^2-2XY

No.19527 - 2012/12/25(Tue) 12:21:28

Re: 数?T / 奈津美
解けました!ありがとうございました_(..)_
No.19529 - 2012/12/25(Tue) 13:12:30
確率 / なら
次のルールに従ってx軸上の点Aを動かすゲームを行う。
(i)最初、点Aはx=0にある。
(ii)サイコロを振り、3の倍数の目が出たらx軸上を+2進み、3の倍数でない目が出たらx軸上を-1進む。
この操作を繰り返し行う。
(iii)ゲーム開始後、点Aがちょうどx=0に止まるとゲームは終了する。
(たとえば、点Aがx=-1にあり、3の倍数の目がでてx=0を通ってx=1にいたるときはゲームは終了しない)
ゲームが終了するまでにサイコロを振った回数がnである確率をPnとする。
(1)P3とP9を求めよ。

A:3の倍数の目がでる確率=1/3
B:3の倍数でない目がでる確率=2/3
P3はAが1回、Bが2回でればよいので3C1・(1/3)・(2/3)^2=4/9
P9について
Aがx回、Bがy回でるとすると、
x+y=9・・・?@
2・x+(-1)・y=0⇔2x-y=0・・・?A
?@?Aよりx=3 y=6
よってAが3回、Bが6回でればよいので
9C3・(1/3)^3・(2/3)^6=1792/6561
となったのですが解答がないのでよく分かりません。
数学が得意な方教えて下さい。お願いします。

No.19523 - 2012/12/25(Tue) 04:24:49

Re: 確率 / ヨッシー
P3 はそれで良いですが、P9 は、3回、6回で終わる場合を排除しないといけません。
No.19524 - 2012/12/25(Tue) 06:30:35

Re: 確率 / なら
完全に見落としてました;
ありがとうございました。

No.19536 - 2012/12/25(Tue) 16:52:33
微分 / 空零落
次の条件を満たす3次関数f(x)を求めよ。
(i)f(0)=1 (ii)f'(0)=f'(1)=-3 (iii)x=αおよびx=βで極値をとり、|f(α)-f(β)|=|α-β|
とりあえずf(x)=px^3+qx^2+rx+sとおいて(i)から順に考えていったのですが
pとqの値がわからず、また、(iii)の条件をどう活かせばよいのかわかりません。
誰か数学が得意な方教えて下さい。お願いします。

No.19521 - 2012/12/24(Mon) 23:32:44

Re: 微分 / _
α<βとでもして、f'(x)=0の解と係数の関係や、
f(β)-f(α)=[α→β]∫f'(x)dx=-(3p/6)(β-α)^3あたりから出してみるのはどうでしょう。

No.19522 - 2012/12/25(Tue) 03:30:13

Re: 微分 / 豆
未知数は少なくしてスタートするのも一つの方法。
(2)よりf'(x)=6ax(x-1)-3とおける
積分して、(1)を使えば、
f(x)=2ax^3-3ax^2-3x+1
f'(x)で割り算して、(3)より
f(x)=(1/6)(2x-1)f'(x)-(2+a)x-1
∴ |f(α)-f(β)|=|(2+a)(α-β)|

No.19525 - 2012/12/25(Tue) 09:39:44
行列 / sfd
(2)の問題がわかりません。
答えは8です
よろしくお願いします

No.19518 - 2012/12/24(Mon) 23:01:35

Re: 行列 / ヨッシー

なので、行列式は
 20・12・10+(-20)・(-13)・30+10・(-14)・(-32)−10・12・30−(-20)・(-14)・10−20・(-13)・(-32)=-40
となります。

No.19519 - 2012/12/24(Mon) 23:22:24

Re: 行列 / rtz
|tB|=|B|、|AB|=|A||B|であること、
また三角行列の行列式は、対角成分の積に等しいことを利用すれば、
|tBAB|=|A||B|2=(-10)*22=-40とすることもできます。
(範囲外かも?)

No.19520 - 2012/12/24(Mon) 23:27:38

Re: 行列 / Sfd
ありがとうございました
No.19531 - 2012/12/25(Tue) 13:53:29
図形と方程式の問題が分かりません。 / 武安
座標平面上の点(x,y)が不等式x^2+y^2≦2・・・?@で表される領域を動く。
(1)X=x+y Y=xyとするとき、点(X,Y)の動く領域を求め、XY平面上に図示せよ。
(2)(2x+1)(2y+1)の最大値と最小値を求めよ。
x,yの条件はx,yが実数でありながら領域?@に存在することですよね?
x,yが実数であることはtの2次方程式t^2-Xt+Y=0の判別式が(判別式)≧0・・・?Aとなればいいですが、
領域?@にあることはどうすればいいんでしょうか?
領域?@にあるx,yは-√2≦x≦√2 -√2≦y≦√2なので
-2√2≦x+y≦2√2 -2≦xy≦2なので-2√2≦X≦2√2、-2≦Y≦2とし
この範囲内で?Aの領域を図示すればいいんでしょうか?
また、?@について
?@はY≧(1/2)X^2-1と変形できますが、この式は何を意味しているんでしょうか?
Y≧(1/2)X^2-1を満たすような適当なX,Yを選んだ時、X,Yのいわば構成要素となっているx,yはかならず領域?@に存在してますよってことを意味しているんでしょうか?
だったらこれと?Aを図示すればいいような気がしますが、なんだかよくわかりません。
間違っている箇所の指摘と正しい解説お願いします。

No.19505 - 2012/12/24(Mon) 15:30:32

Re: 図形と方程式の問題が分かりません。 / ヨッシー
結論から言うと、
>だったらこれと?Aを図示すればいい
で正解です。

ただし、言葉の言い回しとして、
>Y≧(1/2)X^2-1を満たすような適当なX,Yを選んだ時、
>X,Yのいわば構成要素となっているx,yはかならず領域?@に存在

は誤りです。これと、?A が組み合わさって、初めて?@の領域に
存在できます。

また、結果として使っていないのですが、
> -2√2≦x+y≦2√2 -2≦xy≦2なので-2√2≦X≦2√2、-2≦Y≦2
も危険です。
例えば、-2√2=x+y となるのは、-√2≦x≦√2, -√2≦y≦√2
から考えると、x=y=-√2 ですが、これは、?@ には含まれません。

No.19507 - 2012/12/24(Mon) 15:54:10

Re: 図形と方程式の問題が分かりません。 / 武安
素早い回答ありがとうございます。
補足です。
Y≧(1/2)X^2-1だけじゃどうしてダメなんでしょうか?
Y≧(1/2)X^2-1はx^2+y^2≦2を反映させた条件式ですよね?

もう一度考えてみたところ、この条件だけでも十分X,Yは実数といえるような気がしてきました。
xy平面上なのでxとyは絶対虚数にならないから
たとえばx=1+2i、y=1-2iとしたとき
X=(1+2i)+(1-2i)=2(実数)というふうな事態にはならないと思うのですがどうして実数になるための条件が必要なんでしょうか?
教えて下さい。

No.19508 - 2012/12/24(Mon) 16:35:55

Re: 図形と方程式の問題が分かりません。 / ヨッシー
>十分X,Yは実数といえる
X,Y が実数であっても、その元になる x,y が実数として
存在しないとダメです。

例えば、X=4,Y=7 は、Y≧(1/2)X^2-1 を満たしますが、
x+y=4、xy=7 となるような実数x、yは存在しません。
> xとyは絶対虚数にならないから
こそダメな場合があります。

No.19512 - 2012/12/24(Mon) 19:15:51
対数 / チサト
次の条件(i)(ii)をともに満たす自然数nを求めよ。
(i)n^2の桁数はnの桁数より2大きい
(ii)nは5つの連続する自然数の平方の和に等しい
さっぱり分からないので教えて下さい。
おねがいします。

No.19504 - 2012/12/24(Mon) 14:57:55

Re: 対数 / ヨッシー
(i)
対数の底は10とします。
 logn=t とすると
 log(n^2)=2t
であり、nの桁数は[t]+1、n^2 の桁数は[2t]+1 で表されるので、
 [t]+2=[2t]
より、1.5≦t<2.5 以上より、
 10^1.5≦n<10^2.5
10^0.5=3.162 より、
 √1000<32≦n≦316<√100000

(ii) 5の連続する自然数を
 k-2, k-1, k, k+1, k+2 (k は3以上の整数)
とすると、その平方和は 5k^2+10 より
 32≦5k^2+10≦316
 22≦5k^2≦306
 5≦k^2≦61
これを満たすkは、k=3,4,5,6,7
よって、条件を満たすnは
 n=55, 90, 135, 190, 255
となります。

No.19506 - 2012/12/24(Mon) 15:35:55

Re: 対数 / チサト
[t]+2=[2t]の部分を
[t]=2より2≦t<3としてしまったのですが
どうすれば1.5≦t<2.5にできるんですか?
教えて下さい><

No.19509 - 2012/12/24(Mon) 18:34:27

Re: 対数 / ヨッシー
基本的には、値が変わる辺りを調べる、です。
[t] の方は、
0〜1,1〜2,2〜3 でそれぞれ、0,1,2 と変わりますが、
[2t] の方は、
0〜0.5, 0.5〜1, 1〜1.5 で 0,1,2 となりますので、
順々に調べていきます。
※ a〜b は a≦t<b を表すものとします。

No.19511 - 2012/12/24(Mon) 19:10:51
高次方程式 / fairyfore
直方体Pについて3辺の長さ(ここでは底面のたて、よこ、高さをいう)の和が8、表面積が32、体積がVである。
Vの最大値およびそのときの3辺の長さをそれぞれ求めよ。
V=t^3-8t^2+16tとして定数分離を考えてVの取りうる値を求めようとしたのですが範囲が無制限なので最大値といえる値が得られません。
どうすれば求められるのでしょうか?
教えて下さい。

No.19488 - 2012/12/23(Sun) 20:39:59

Re: 高次方程式 / うーぱ
tが何を表してるかによりますね
No.19490 - 2012/12/23(Sun) 21:12:13

Re: 高次方程式 / らすかる
V=t^3-8t^2+16t において tが3実数解を持たなければいけませんので
y=V と y=t^3-8t^2+16t の交点が(重複を許して)3個、すなわち
右辺の極大値が最大値になります。

No.19496 - 2012/12/23(Sun) 21:39:46
積分 / 工学部2年
∫[-1,1]√(1+x^2)dx

この定積分の解き方を教えてください.

No.19486 - 2012/12/23(Sun) 19:31:19

Re: 積分 / らすかる
t=x+√(1+x^2) とおいてはいかがでしょうか。
No.19491 - 2012/12/23(Sun) 21:14:58

Re: 積分 / うーぱ
誘導がなければ
∫√(x^2+a)dx=(1/2){x√(x^2*a)+aloglx+√(x^2+a)l}+C(Cは積分定数)を覚えておくのが現実的かと。途中過程無しにいきなり積分結果を書いてしまって構いません。

No.19492 - 2012/12/23(Sun) 21:16:35

Re: 積分 / うーぱ
∫√(x^2+a)dx=(1/2){x√(x^2+a)+aloglx+√(x^2+a)l}でした
No.19493 - 2012/12/23(Sun) 21:17:47

Re: 積分 / 工学部2年
ありがとうございます
No.19497 - 2012/12/23(Sun) 22:13:25
全22549件 [ ページ : << 1 ... 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 ... 1128 >> ]