[ 掲示板に戻る ]

過去ログ閲覧モード

文系数学 線形計画法 / 辰夫
3≦2x+y≦4、5≦3x+2y≦6のとき、x、y、x+y、(x+y)/(2x+y)の範囲を求めよ。
という問題で、ぱっと思い浮かんだのが数2で習う線形計画法だったので
とりあえず3≦2x+y≦4と5≦3x+2y≦6をy=〇x+△の形になるように変形して領域を図示したのですが、ここで疑問点が。
疑問?@
「3≦2x+y≦4、5≦3x+2y≦6のとき」というのは「3≦2x+y≦4 【かつ】 5≦3x+2y≦6のとき」ということなのでしょうか?
【または】なのか【かつ】なのかこういう問題になるといつも悩みます。

また、
疑問点?A
xとyとx+yのときは線形計画法で求めれたのですが
(x+y)/(2x+y)はどうしてもうまくいきません。
以下自分の計算です。
「(x+y)/(2x+y)=k(kは実数)・・・?@とする。
?@の両辺に2x+yをかけて整理すると
(1-2k)y=(2k-1)x
(i)1-2k>0(k<1/2)のとき
y=(2k-1)(1-2k)・x=-x
・・・・」
ここで詰んでしまいました。
y=-xと最初に作った領域は絶対に交わらないですよね^^;
どうやって解けばいいんでしょうか。。。ちなみに答は1/4≦(x+y)/(2x+y)≦1です。
数学は洒落にならないほど苦手なので
誰か分かる方線形計画法での解き方を教えてください。お願いします。

No.18127 - 2012/07/25(Wed) 16:42:38

Re: 文系数学 線形計画法 / 辰夫
補足です。
3≦2x+y≦4、5≦3x+2y≦6のとき、x、y、x+y、(x+y)/(2x+y)の取りうる範囲を求めよ。
解答では
「2x+y=p・・・?@ 3x+2y=q・・・?Aとおいて
3≦p≦4 5≦q≦6・・・(A)
?@?Aよりx=2p-q
(A)とから答は0≦x≦3」
としていたのですが
このようにする理由がいまいちピンときません。
3≦2x+y≦4、5≦3x+2y≦6の満たす図形をxy平面上に書いてやると
0≦x≦3 ,-2≦y≦3というのはあっさり分かりますが
x+yのとりうる範囲を求める際
0≦x≦3と-2≦y≦3の両辺を足して
-2≦x+y≦6としてしまうと
たとえばx+y=-2のときのxとyの組み合わせで(x,y)=(0,-2)がありますが
これは先ほど書いた条件式を満たす図形の領域内にある点ではないので-2≦x+y≦6はこの瞬間破綻してしまいました。
なので普通にやるとまず間違えるのですが
解答のやり方がよくわからないんです。(線形計画法なら(3)まで解けました)
そもそも2x+y=p 3x+2y=qとすることで何が分かるんでしょうか?
以下は自分なりに考えてみたのですが、
2x+y=pについて
pのとりうる値は3~4。
3~4と限定されたpの値に応じてそれに対応するxとyの値も限られてくる(?)
?@と?Aからxの式をつくりだすと
x=2p-q

pとqにはそれぞれ3~4と5~6という制限があるので
このそれぞれのpとqの値に応じて得られるxの値も制限されたものになると考え
(A)とから0≦x≦3としているのでしょうか?
もしそうなら納得できるのですが↑はあくまで感覚かつ憶測からきた考えなのでよくわかりません。
どなたか分かる方教えて頂けないでしょうか?
おねがいします。

No.18129 - 2012/07/25(Wed) 17:10:49

Re: 文系数学 線形計画法 / 辰夫
少し気になったのですが
解答の方法でいくと
x+yの範囲を考える時点で
xとyはそれぞれ0≦x≦3と-2≦y≦3と範囲が決まってますよね?
ということはこの時点でxとyは変数じゃなくて定数なんでしょうか?定数なら
0≦x≦3と-2≦y≦3を足しあわして
-2≦x+y≦6と計算だけみるとして良い気がするのですが・・・
いずれにしても知識からなにまで曖昧です。
どなたか分かる方よろしくおねがいします。
(質問多すぎてごめんなさい)

No.18132 - 2012/07/25(Wed) 18:34:03

Re: 文系数学 線形計画法 / ヨッシー
まず、時間的に新しい方から...
0≦x≦3と-2≦y≦3 から -2≦x+y≦6 としてはいけない理由。
xとyが、それぞれ無関係に、上記の範囲を動くなら、
-2≦x+y≦6 で良いですし、また、xとyとの間に、
何らかの関係がある場合でも、
x=0 のときに y=−2 であり、x=3 のときに y=3
となることが出来るのであれば、
 -2≦x+y≦6
と書くことは出来ます。ところが、この問題では、
3≦2x+y≦4、5≦3x+2y≦6 であるので、x=0 のときは
y=3 しかとれませんし、x=3 となるのは、y=−2 のとき
だけです。
よって、 -2≦x+y≦6 とは書けません。

xとy の間にどんな関係があるかを表現したものの一つが、
2x+y=p 3x+2y=q とおく方法です。
これを、x、yについて解くと、
 x=2p−q y=2q−3p
であり、pを大きくすると、xは増えますが、yは減るので、
pが大きいほど、x+y が大きい(または小さい)訳ではありません。

 x+y=q−p
であり、 5≦q≦6 −4≦−p≦−3 なので、
 5−4=1≦x+y=q−p≦3=6−3
最小は q=5 p=4 のときなので、これを解いて、
 x=3 y=−2
最大は q=6 p=3 のときなので、これを解いて
 x=0 y=3
において、それぞれ実現します。 

No.18142 - 2012/07/25(Wed) 23:10:16

Re: 文系数学 線形計画法 / ヨッシー
次に、グラフを使って、解けないかということですが、
上の記事の
>両辺に2x+yをかけて整理すると
の下の行から、計算が違っています。

(x+y)/(2x+y)=k とおくと、
x+y=k(2x+y)
(1−2k)x=(k−1)y
k=1 のとき
 x+y=2x+y より x=0 このとき 
3≦2x+y≦4、5≦3x+2y≦6 より y=3
k≠1 のとき x=y=0 はあり得ないので、x≠0
よって、
 y/x=(1−2k)/(k−1)
原点から、3≦2x+y≦4、5≦3x+2y≦6 が表す平行四辺形に
直線を引いたとき、傾きの最小値は x=3 y=−2 のときの −2/3
最大値は+∞に発散します。よって、
 (1−2k)/(k−1)≧−2/3
k>1 のとき
 3(1−2k)≧−2(k−1)
 k≦1/4
 これは k>1 に属さない
k<1 のとき
 3(1−2k)≦−2(k−1)
 k≧1/4
 よって、1/4≦k<1
これと最初のk=1 を合わせて 1/4≦k≦1

No.18143 - 2012/07/25(Wed) 23:22:22

Re: 文系数学 線形計画法 / ヨッシー
あとさきになりましたが、p、qを使って、
 (x+y)/(2x+y)
の最大最小を求める方法です。
 (x+y)/(2x+y)=(q−p)/p=q/pー1
よって、q/p が最大(最小)の時、(x+y)/(2x+y)も最大(最小)となります。
p、q はともに正なので、
 pが最小、qが最大の時 q/p は最大
 pが最大、qが最小の時 q/p は最小
(以下略)

No.18144 - 2012/07/25(Wed) 23:25:36

Re: 文系数学 線形計画法 / 辰夫
xとyはそもそも実数で
たとえば2x+y=kとすると
これはy=-2x+k
これをxy平面上に図示すると切片k、傾き-2の直線ですよね。
kは定数でいいとして、xとyに関しては直線上の(x,y)の組み合わせだけあるので無限に存在しますよね。
なので、xとyは変数だと思うのですが
そのなかでも、xとyの取りうる値が0≦x≦3 ,-2≦y≦3とわかったのでこの時点でxとyは定数のように見えてしまいまうのですがどうなんでしょうか?
また、
?@k≠1 のとき x=y=0 はあり得ないので、x≠0
?A最大値は+∞に発散します。よって、(以下)

?@と?Aがいまいちピンときません。
また、特に?Aは+∞と発散という表現は数学IAIIBまでしかやっていないのでよくわからないです。
数学?VCの知識がないとこの問題は解けないんでしょうか?
また、そのため(以下)の部分もイメージが難しいです;
あと少しで何かが掴めそうです・・・
もう少しお付き合いお願いします。

No.18145 - 2012/07/26(Thu) 00:11:37

Re: 文系数学 線形計画法 / ヨッシー
ここで言う定数と変数の違いは何ですか?

>?@k≠1 のとき x=y=0 はあり得ないので、x≠0
 (1−2k)x=(k−1)y
を、
 y/x=(1−2k)/(k−1)
の形にしたいわけですが、k−1≠0 は既に言ってありますが、
x≠0 を言わないうちは、xで割るわけにいきません。
そこで、x=0 とすると、
 (1−2k)x=(k−1)y かつ k≠1 より
y=0 になりますが、これは、3≦2x+y≦4、5≦3x+2y≦6 を
満たさないのでダメです。
ここまでを「x=y=0 はあり得ないので」で片付けています。

>?A最大値は+∞に発散します
は、(1−2k)/(k−1)は、いくらでも大きくなります。
だから、範囲が決まるのは、最小値側だけです。
という程度に受け取ってください。

No.18152 - 2012/07/26(Thu) 20:04:04

Re: 文系数学 線形計画法 / 辰夫
理解できました!
長い事お付き合いいただき本当にありがとうございました!

No.18158 - 2012/07/27(Fri) 13:30:30
濃度についておしえてください / ももこ
(a)Z の濃度は
(b){50 以下の素数}の濃度は
(c){偶数全体}の濃度は
(d){100 以下の自然数で,2 または3 の倍数}の
濃度は
(e)(0, 1] の濃度は
(f)Q の濃度は
(g){正の有理数全体}の濃度は

No.18124 - 2012/07/25(Wed) 16:33:27
集合 / ももこ
集合A に対して(A−B) ∪ (B −A) = φ となる
B=???
Bは何になりますか?
φですか?
解説お願いします

No.18121 - 2012/07/25(Wed) 14:37:05

Re: 集合 / ITVISION
A−B ⊆ (A−B) ∪ (B −A) = φ
よってA−B = φ
よってA⊆B

同様に
B −A ⊆ (A−B) ∪ (B −A) = φ
よってB −A = φ
よってB⊆A

したがって B=A

ちなみに B=φ のばあい
(A−B) ∪ (B −A)=(A−φ) ∪ (φ −A)=A ∪ φ=A となります。

No.18122 - 2012/07/25(Wed) 16:17:03

Re: 集合 / ももこ
A-B=φまではわかりました
なでA⊆Bという等式がなりたつのですか?  

No.18123 - 2012/07/25(Wed) 16:32:47

Re: 集合 / ITVISION
x ∈ A-B ⇔ (x ∈ A) かつ (x ∉ B)
はいいですか?(集合の差 - の定義です)

A-B=φ⇒「(x ∈ A) かつ (x ∉ B)となる元xが存在しない」

すなわち「(x ∈ A) ならば (x ∈ B)」
よってA⊆B

No.18130 - 2012/07/25(Wed) 17:52:57
(No Subject) / !
1≦|x|+|y|≦2のグラフ
||x|-|y||=1のグラフの書き方を教えて下さい

No.18120 - 2012/07/25(Wed) 14:18:00

Re: / ヨッシー
まず、1≦|x|+|y|≦2

点(x,y) が
第1象限(軸を含む。以下同じ)の点の場合(x≧0 かつ y≧0 ということです)
 1≦x+y≦2
第2象限の場合 1≦-x+y≦2
第3象限の場合 1≦-x-y≦2
第4象限の場合 1≦x-y≦2

以上より、下のようなグラフになります。

 

No.18125 - 2012/07/25(Wed) 16:40:31

Re: / ヨッシー
次に、||x|-|y||=1

点(x,y) が
第1象限のとき |x-y|=1
 x≧y のとき x−y=1 ・・・(1)
 x<yのとき y−x=1 ・・・(2)
第2象限のとき |-x-y|=1
 x+y>0 のとき x+y=1 ・・・(3)
 x+y≦0 のとき −x−y=1 ・・・(4)
第3象限のとき |y-x|=1
 y≧x のとき y−x=1 ・・・(5)
 y<x のとき x−y=1 ・・・(6)
第4象限のとき |x+y|=1
 x+y<0 のとき −x−y=1 ・・・(7)
 x+y≧0 のとき x+y=1 ・・・(8)

以上より、下のようなグラフになります。

No.18128 - 2012/07/25(Wed) 16:57:14
組み分け / bay
男女六人ずつで合計12人のクラスがある。このクラスには男子のA君、B君と、女子のCさんがいる。このクラスをくじ引きで四人ずつの三つの班に分ける。
1)A君とB君が同じ班になる確率は?
2)B君とCさんが同じ班で、かつA君はそれとは別の班になる確率は?
3)A君が男子2人、女子2人の班に入る確率は?


自分が作った解答)
C(コンビネーション)の連続積では順列が発生するという知識を使う。

3つの班は全て区別し、選んだ順に1班、2班、3班と名付ける。
全事象は(12C4*8C4*4C4)/3!・・?@通り

1)A君とB君が同じ班になる場合の数は
第一班「AB**」第二班「****」第三班「****」(*は誰でもよいということ)
(10C2*8C4)/3!・・?Aより
求める確率は
?A/?@=10C2/12C4=△

2)BとCが同じ班でAが別の班となるケースは
第1班「BC**」第二班「A***」第三班「****」
(9C2*7C3)/3!・・?B
求める確率は
?B/?@=(9C2*7C3)/(12C4*8C4)=○

3)第一斑「A男女女」第二班「****」第三班「****」
よって求める場合の数は
5C1*6C2*8C4/3!・・?C
より?C/?@=(5C1*6C2)/12C4=▼

となるのですが答えは全然違いました
一体ドコがだめなのか教えてください。

よろしくお願いします。

No.18118 - 2012/07/25(Wed) 12:05:54

Re: 組み分け / angel
> 一体ドコがだめなのか教えてください。
…色々と。
まあ、計算間違いをしている所 ( 例えば?A/?@とか。といっても正しく計算すれば正しい答えになるというわけではない ) を除けば、

・/4! や /3! の意図が不明。( というより不用 )
・AやB,Cが第何班になるかが考慮不足
 ( 選んだ順に班に名前をつけているので、A は第一班とは限らない )

の所に気をつければ、正しい答えが出せると思います。

No.18119 - 2012/07/25(Wed) 12:50:51

Re: 組み分け / bay
4!は3!のうちミスです。
全ての人間は区別して考えるので1)の第二版と第三班の****、と****は違う人です。。正直わからないです..

No.18133 - 2012/07/25(Wed) 20:22:20

Re: 組み分け / angel
4!と3!の件、了解しました。それであれば、ちょっとした修正で正しい答えになりますね。

まず
> 3つの班は全て区別し、選んだ順に1班、2班、3班と名付ける。
という方針である以上、全体の事象は 12C4×8C4 です。
※×4C4 はつけてもつけなくても良い
でもって÷3!は不用です。

これは丁度、「1班」と書いた椅子4脚に12人中4人を座らせ、次に「2班」と書いた椅子4脚に残り8人中4人を座らせ、残りを全て「3班」と書いた椅子4脚に座らせる、そういう状況と同じです。

さて、例えば(1)ですが、Aが1班〜3班のどこになるかは分かりません。ここで3通りの可能性があります。
なので(1)の事象は 10C2×8C4×3 となります。( 同じく÷3!は不用 )
これを全体で割れば 3/11 という答えが出ます。

(2)に関しては B,C の班が3通り、Aの班が2通りで×6です。
( ×3P2 でも良い )

No.18146 - 2012/07/26(Thu) 00:48:49

Re: 組み分け / bay
実際には(問題文では)最終的に第〜班などという組の名前は付いていないので少し気持悪いです。それを打ち消すために3!で割りたいのですが、その解法で解く事は可能でしょうか?
No.18149 - 2012/07/26(Thu) 12:54:14

Re: 組み分け / angel
> その解法で解く事は可能でしょうか?
もちろん可能ですし、色々な方法で解けるのは一般に良いことです。
しかし、「気持ち悪いから」という理由で今までの解法を敬遠するのは勿体ないと思います。こちらの方が分かり易いですから。
※第1班とかの名前がイヤなら、班α,β,γとかp,q,rとか文字で置いてしまえばよいのです。

ちょっと考えてみてほしいのですが、bayさんがこの班分けの抽選を用意するとしたらどうしますか…?
1を書いた紙、2を書いた紙、3を書いた紙を4枚ずつ用意して、同じ数字の紙を引いたもの同士が同じ班、1なら第1班、2なら第2班、3なら第3班と、そういう抽選にするのは非常にありがちではないですか?
だから、班に名前をつけて区別する、というのは素直に分かりやすいのです。

さて話を戻して。
÷3!をつける、つまり班を区別しない方式で解くとしたら、各事象はそれぞれ次のようになります。

 全体:12C4×8C4÷3!
 (1):10C2×8C4÷2!
 (2):9C2×7C3
 (3):5C1×6C2×8C4÷2!

これを見て、÷2!になっていたり、はたまた÷○!がなかったり、その違いが分かるでしょうか。自分で解く時にしっかり考えられるでしょうか。難易度はやや上がっているのです。
これで要らぬミスをする位なら、班を区別してやった方が良いと思います。

No.18154 - 2012/07/26(Thu) 23:31:58
場合の数 / 辰夫
6人を3人、2人、1人に分けるとき
6C3×3C2×1C1=60(通り)としますが
この式はたとえば6人の人を?@?A?B?C?D?Eとすると
?@?A?B | ?C?D | ?E ・・・(a)
?@?A?B | ?C?E | ?D・・・(b)
みたいに60通り中(a)がその中の1通りで(b)もその中の1通りですよね。
ということは(a)(b)以外の選び方が後58通り存在するということなんでしょうか?
それからたとえば?@?A?B | ?C?D | ?E ・・・(a)という場合が60通りの中で重複するなんてことはないですよね?
6C3×3C2×1C1って式は1つ1つ別のものを選んでできた場合の数を1通りとしていますよね?
感覚では理解できているんですがよく考えたらよくわからなくなってしまいました・・・
どなたか教えてください。お願いします。

No.18116 - 2012/07/25(Wed) 10:04:31

Re: 場合の数 / ヨッシー
>(a)(b)以外の選び方が後58通り存在するということなんでしょうか?
はい、あと58通りあります。

>60通りの中で重複するなんてことはないですよね?
重複はしません。

6C3×3C2×1C1 は、
まず、6人から、3人のグループに入れる人を選ぶ選び方が 6C3 通り。
そのそれぞれについて、残りの3人から、2人のグループに入れる人を選ぶのが 3C2 通り。
さらにそのそれぞれについて、残り1人から、1人のグループに入れる人を選ぶのが 1C1 通り。
なので、それぞれ掛けて、6C3×3C2×1C1 となります。

このように、3人、2人、1人 と選んでいく方法の他に、次のような方法もあります。

6人を一列に並べて、1,2,3番目の人を3人のグループ、
4,5番目の人を2人のグループ、6番目の人を1人のグループ
に入れるようにするとします。
6人の並べ方は6!通りです。
このとき、3人のグループについて
?@?A?B|?C?D|?E
?@?B?A|?C?D|?E
?A?@?B|?C?D|?E
?A?B?@|?C?D|?E
?B?@?A|?C?D|?E
?B?A?@|?C?D|?E
の6(=3!)通りが重複していますし、2人のグループも、
2(=2!)通りずつ重複しています。
よって、6!÷3!÷2!=60 とする方法です。

No.18117 - 2012/07/25(Wed) 10:38:01

Re: 場合の数 / 辰夫
ありがとうございました
No.18126 - 2012/07/25(Wed) 16:42:01
教えてください / えな
この問題教えてください。
よろしくお願いします。

No.18107 - 2012/07/24(Tue) 19:24:49

Re: 教えてください / ITVISION
方針だけ(他の方法もあるかも知れません 特に(3))
(1)fn’を微分して増減と極小値(最小値になります)を調べる。
(2)fn(-1)<0、fn(-1/2)>0を示す。これとfn’>0を使う(fn(-1/2)>0は、 fn(0)>0 でもいいですが(3)で使うので)
(3)fn(-1/2-1/n)<0 を示す。これとfn(-1/2)>0を使う。

まず、fnの微分、fn’の微分(fnの2階微分)はどうなりますか?

No.18108 - 2012/07/24(Tue) 21:59:29

Re: 教えてください / えな
回答ありがとうございます。
fn'(x)=(nx+n+1)e^(nx)+2
fn''(x)=(nx+n+2)ne^(nx)
となりました。

fn'(x)=0となるときがわかりません。

No.18110 - 2012/07/24(Tue) 23:31:45

Re: 教えてください / ITVISION
つぎにfn''(x)=(nx+n+2)ne^(nx)=0となるときを調べます。
nx+n+2=0 より x=-(n+2)/n このときのfn'(x)が極小値であり最小値になります。fn'の増減表で確認してください。

fn'の最小値はいくらになりますか?

>fn'(x)=0となるときがわかりません
fn'(x)=0にはなりません。 問題にもあるようにすべての実数xについてfn'(x)>0です。

No.18111 - 2012/07/24(Tue) 23:49:32

Re: 教えてください / えな
fn'(-(n+2)/n)=-e^{-(n+2)}+2
となりました。
合っているでしょうか…?

No.18112 - 2012/07/25(Wed) 00:31:43

Re: 教えてください / ITVISION
いいと思います。
nが正の整数のとき
fn'(-(n+2)/n)=-e^{-(n+2)} + 2 > 0 は分かりますよね。

No.18113 - 2012/07/25(Wed) 00:41:28

Re: 教えてください / えな
はい、大丈夫です。
No.18114 - 2012/07/25(Wed) 00:44:44

Re: 教えてください / ITVISION
増減表などを使ってきちんと書いてけば(1)は終わりです
(2)は簡単だと思います。
※できるところまでやって不明な点があればお知らせください。
(3)の目星のつけ方
fn(-1)<0、fn(-1/2)>0 より
fn(x)=0 の実数解xnは -1<x<-1/2 にあります。

この区間では、
fn(x)=(x+1)e^nx+2x+1 のうち(x+1)e^nxは nが大きくなるとどんどん絶対値が小さくなり、いくらでも0に近づきます。すなわちfn(x)は2x+1にいくらでも近づきます。

2x+1=0 の解は x=-1/2なので、fn(x)=0の実数解xnも-1/2に近づきそうです。
注)一般的には 関数列 fn → f に一様収束するからといって 「(fn(x)=0 の実数解) → (f(x)=0 の実数解)」というわけではありません。  

No.18115 - 2012/07/25(Wed) 00:52:49

Re: 教えてください / えな
はさみうちを使うようなのですが
どうなるでしょうか…?

No.18151 - 2012/07/26(Thu) 19:16:14

(3)続き / angel
ITIVISIONさんのコメントで、lim x[n] = -1/2 が予想できるところまでは良いでしょうか。
また、-1<x[n]<-1/2 が分かっているため、はさみうちとしては上側は問題ありません。なので、下側をどう見積もるか、というお話になります。

さて。fn(x) は形が複雑なので、fn(x)=0 の解の大きさを見積もるのはそのままでは難しいところです。なので、fn(x)よりも単純な形で、なおかつ x[n] よりやや小さい a[n] で値がゼロになるような関数 gn(x) を作ってあげれば良いのです。

添付の図のように、-1<x<-1/2 の区間で fn(x)<gn(x) を満たすような一次関数gn(x) を定めてあげれば、gn(x)=0 の解 a[n] は、a[n]<x[n] を満たします。
具体的には、gn(x) = (x+1)・e^(n・(-1/2))+2x+1 が良いでしょう。fn(x) の e の指数にあった x を -1/2 に替えただけですが。
後は、e^(n・(-1/2)) そのままだと分かりにくいかも知れないので、これを b[n] とでも置いて a[n] を計算してみましょう。

No.18176 - 2012/07/28(Sat) 11:40:52
グラフの書き方 / !
1≦|x|≦2 1≦|y|≦2 グラフ
のグラフはどのようになりますか?
またどうやって解けばよいですか?

No.18106 - 2012/07/24(Tue) 18:56:36

Re: グラフの書き方 / ヨッシー
(-2≦x≦-1 または 1≦x≦2) かつ (-2≦y≦-1 または 1≦y≦2)
なので、下図のようになります。

No.18109 - 2012/07/24(Tue) 22:58:16
文系数学 解答が理解できません。 / 文茶
数学が不得意な文系です。
よろしくお願いします。
1080の正の約数の個数をnとし,約数を小さい順にa[1],a[2], ... ,a[n]とする。
log(10)2 = 0.3010, log(10)3 = 0.4771 とし,次の問に答えよ。

(1)1080の正の約数の個数nの値を求めよ。
(2)Σ(i=1〜n)log(10)a[i] の値を求めよ。

(1)は素因数分解すると
1080=2^3・3^3・5
より正の約数の個数は(3+1)・(3+1)・(1+1)=32

(2)
<答>
Σ(i=1〜n)log(10)a[i] =log(10)a[1]+log(10)a[2]+・・・log(10)a[n]=log(10){a[1]・a[2]・、・・・a[n]}
2^1×3^y×5^zで表せる約数は4・2=8個であり
2^2×3^y×5^z、2^3×3^y×5^zのときも同様である。素因数3と5についても同様に考えると
Σ(i=1〜n)log(10)a[i]=log(10)[ 2^{(1+2+3)×8} × 3^{(1+2+3)×8} ×5^(1×16) ] =48.5328
とあるのですが全く持って解答の意味が理解できません。
どなたか分かる方詳しく教えてください。お願いします。

No.18104 - 2012/07/24(Tue) 00:08:00

Re: 文系数学 解答が理解できません。 / ヨッシー
(1)
約数の個数については、こちらを参照してください。

(2)
Σ(i=1〜n)log(10)a[i] =log(10)a[1]+log(10)a[2]+・・・log(10)a[n]=log(10){a[1]・a[2]・、・・・a[n]}
は、公式 logA+logB=log(AB) を適用したものです。
では、a[1]・a[2]・、・・・a[n] は、いくつかということになりますが、
たとえば、60=2^2×3×5 の約数は、
1,2, 2^2
3, 2×3, 2^2×3
5, 2×5, 2^2×5
3×5, 2×3×5, 2^2×3×5
の12個ですが、このうち、
2が掛けられていないものが4個。
2が1つ掛けられているものが4個。
2が2つ掛けられているものが4個。
3が掛けられていないものが6個。
3が1つ掛けられているものが6個。
5が掛けられていないものが6個。
5が1つ掛けられているものが6個。
なので、12個の約数を全部掛けたら、
2が 1×4+2×4=12個
3と5がそれぞれ、1×6=6個
掛けられているので、約数の積は 2^12×3^6×5^6 となります。

1080=2^3・3^3・5 についても同様に、32個の約数のうち
2が掛けられていないものが8個。
2が1つ掛けられているものが8個。
2が2つ掛けられているものが8個。
2が3つ掛けられているものが8個。
3が掛けられていないものが8個。
3が1つ掛けられているものが8個。
3が2つ掛けられているものが8個。
3が3つ掛けられているものが8個。
5が掛けられていないものが16個。
5が1つ掛けられているものが16個。
なので、約数の積は、2^48×3^48×5^16 となります。
これのlogを取ると、
 log(2^48×3^48×5^16)=48log(2)+48log(3)+16log(5)
log(5)=log(10÷2)=log(10)−log(2)=1−log(2)
に注意して計算すると、48.5328 となります。

No.18105 - 2012/07/24(Tue) 07:10:33
基底証明 / もーたす
n次行列AがrankA=nを満たすならばAの列ベクトルの集合{a1,a2,...,an}はC^nの基底をなすことを示せ

一次独立とspanを証明すると思うんですが、spanの証明がよくわかりません

No.18103 - 2012/07/23(Mon) 22:02:49
積分 / さい

∫sin^4xcos^6x dx

お願いします

No.18098 - 2012/07/22(Sun) 18:45:59

Re: 積分 / X
被積分関数の次数を下げます。

{(sinx)^4}{(cosx)^6}={(sinxcosx)^4}{(cosx)^2}
={{(1/2)sin2x}^4}(1+cos2x)/2
={(1/32)(sin2x)^4}(1+cos2x)
={(1/32){(1-cos4x)/2}^2}(1+cos2x)
=(1/128){1-2cos4x+(cos4x)^2}(1+cos2x)
=(1/128){1-2cos4x+(1/2)(1+cos8x)}(1+cos2x)
=(1/256)(3-4cos4x+cos8x)(1+cos2x)
=… (展開して積和の公式を使うと…)
ですので…。

No.18100 - 2012/07/22(Sun) 19:25:51
メビウス関数について / がるべす
g(n)=Σd|nμ(d)f(n/d)⇒ f(n)=Σd|ng(d)
はどのように証明したらいいですか。

よろしくお願いします。

No.18097 - 2012/07/22(Sun) 11:44:34
(No Subject) / 犬好きおやじ
A,Bの2人が硬貨を投げるゲームを行う。表が出ればAが、裏が出ればBが1点を得るものとする。先に5点差をつけた人を勝ちとしてゲームは終了する。硬貨を10回投げる間にAが勝つ確率を求めよ。
という問題で、(AAAAA),(AAAABAA)などと場合分けしながら計算したのですが、解答と合いません。ご指導をお願い致します。ちなみに解答は7/64です。宜しくお願い致します。

No.18084 - 2012/07/21(Sat) 20:00:50

Re: / 海岸
表が出るときをs、裏が出るときをtと表記します
Bが0回のときsssss
Bが1回、Aが6回の時
tssssss
stsssss
sstssss
ssstsss
sssstss
の5通り
Bが2回、Aが7回の時
ttsssssss
tstssssss
tsstsssss
tssstssss
tsssstsss
tssssstss

sttssssss
ststsssss
stsstssss
stssstsss
stsssstss

ssttsssss
sststssss
sstsstsss
sstssstss

sssttssss
ssststsss
ssstsstss

ssssttsss
sssststss

の6+5+4+3+2=20通り
1/2^5+5/2^7+20/2^9=7/64
となります

No.18085 - 2012/07/21(Sat) 21:03:09

Re: / ITVISION
表の回数をa、裏の回数をbとすると
5点差となるのは a-b=5で、a+b=5+2b(奇数)なので
5回目以降の奇数回目

5回目でAが勝つ確率 (1/2)^5 = 1/32

7回目でAが勝つ場合は、
 最後の2回は表表(6回目が裏だとすると5回目までにAが勝っているから)
 1から5回目までは表が4回、裏が1回で+3点
 □□□□□表表
 確率は (5C1)(1/2)^7 = 5/128

9回目でAが勝つ場合は、
 最後の2回は表表
 1から7回目までは表が5回、裏が2回で+3点
 ただし、最初の連続5回が表の場合は除く
 □□□□□□□表表
 確率は ((7C2)-1)(1/2)^9 = 20/512=5/128

よって求める確率は (1/32)+(5/128)+(5/128) = 7/64

No.18086 - 2012/07/21(Sat) 21:20:00

Re: / 犬好きおやじ
海岸さん、ITVISIONさんご指導ありがとうございました。お2人ともとてもわかりやすい解説で、自分の場合分け、計算ミスがはっきりと分かりました。ありがとうございました。
No.18093 - 2012/07/22(Sun) 09:20:05
重心 / 海岸
単位円周上のn等分点について、n点の重心が原点0であることを証明せよ。

を教えてください。
三角形の重心は2本の中線の交点という定義でしたが、4角形以降の重心ってそもそもなんなんでしょうか?(指一本で支える事ができる位置というのは感覚的に知っていますが。。)

ほぼ丸投げになりましたがどうかよろしくお願いします

No.18083 - 2012/07/21(Sat) 19:37:26

物理的な重心 / angel
物理的には、重心というのは「位置ベクトルの質量による重み付け平均」です。重心の位置に、全ての質量が集まっているものとして扱えるのです。
※「指一本で支える事ができる」というのがそう。

例えば、質量1kgの限りなく大きさの小さい2つの物質(こういうのを質点という)が、質量の無視できる軽い棒の両端にくっついている場合、重心は棒の丁度中心になります。

質点の数が増えた場合、
 重心の位置ベクトル
 = { (質点1の質量)・(質点1の位置ベクトル)
   + (質点2の質量)・(質点2の位置ベクトル)
   + … } ÷ (全ての質点の質量の和)
という計算になります。
※なお「ベクトル」を習っていないのであれば、
 (重心のx座標)={ (質点1の質量)・(質点1のx座標) + … } ÷ (全ての質点の質量の和)
 のように読み替えてください ( y,z座標についても同様 )

では、対象がばらばらの点の集まりではなく,板(2次元)や球状のもの(3次元)だとどうするか?
それは、対象を非常に細かく、限りなく細かく分割して、それら分割したものに対して上記の計算を行います。
…その「限りなく細かく分割して」というのがいわゆる「積分」という計算です。

No.18088 - 2012/07/21(Sat) 23:23:01

数学的な重心 / angel
さて、では数学的な重心はどうなるかというと、物理的な重心と同じなのですが、「全ての部位が均質な質量(密度)」という前提になります。

例えば三角形の重心であれば、「密度の均質な(部分的に重い・軽いがないような)素材で作った三角形の板状の物質の『物理的な重心』」のことです。
※ちなみにこれは、偶然というべきか、「三角形の頂点に質量の等しい質点を配置した場合の、3質点の『物理的な重心』」とも一致します。

今回の問題は「複数の点の重心」ですから、それらの点を質量の等しい質点とみなして「物理的な重心」を考えれば良い訳です。
つまり、
 (n点の重心の位置ベクトル)
 = { 均一の質量m・(点1の位置ベクトル) + m・(点2の位置ベクトル) + … } ÷ (n点の質量の総和=nm)
 = { (点1の位置ベクトル)+(点2の位置ベクトル)+… }÷n
 = (各点の位置ベクトルの平均)

早い話が、各点のx座標の平均が重心のx座標、y,z座標についても同様、ということです。

No.18089 - 2012/07/21(Sat) 23:36:22

問題に戻って / angel
では前置きが長くなりましたが、この問題をどう解くか、ですね。
単位円(半径1の円)周上のn等分点というのは、α=2π/n と置いた時に、
 (cos0, sin0), (cosα,sinα), (cos2α,sin2α), …, (cos((n-1)α), sin((n-1)α))
と表現できますね。

重心の座標はこれらの点の座標の平均なわけですから、
 x座標 xG = (cos0+cosα+cos2α+…+cos((n-1)α))/n
 y座標 yG = (sin0+sinα+sin2α+…+sin((n-1)α))/n
と計算することができます。
でもって、これが原点の座標と一致することを示したいので、やることは「カッコの中が0であることを示すこと」

つまり、この規則正しい形をした三角関数の値の和

 cos0+cosα+cos2α+…+cos((n-1)α)
 sin0+sinα+sin2α+…+sin((n-1)α)

が共に0となることを、計算で確認してあげれば良いのです。
こういう計算、見たことありますよね?
( sin(α/2) なり cos(α/2) を全体にかけて、個々の項を積和の公式で変形してあげるアレです )

まあ、もしくは、複素平面を習っていればもっと楽に解けますけど…

No.18090 - 2012/07/21(Sat) 23:51:56

Re: 重心 / 海岸
詳しい説明ありがとうございます。
色々やって見ましたが
cos0+cosα+cos2α+…+cos((n-1)α)
=0
sin0+sinα+sin2α+…+sin((n-1)α)
=0
が導けません。教えてもらえないでしょうか。。

No.18101 - 2012/07/22(Sun) 20:52:55

等差数列をなす角の三角比の和 / angel
では cos の和の例で。

まず、
 sin(θ+φ)-sin(θ-φ)=2cosθsinφ
であることを確認してください。
そうすると、θがα×整数 ( 例えば 3α )、φ=α/2 とすると、
 sin(3α+α/2)-sin(3α-α/2)=2cos(3α)sin(α/2)
つまり、
 2sin(α/2)cos(3α)=sin(3.5α)-sin(2.5α)
 ※後の話の分かりやすさのため、敢えて小数で書いています
これを cosα〜cos3α の和に利用すると、
 2sin(α/2)( cosα+cos(2α)+cos(3α) )
 = 2sin(α/2)cosα + 2sin(α/2)cos2α + 2sin(α/2)cos3α
 = ( sin(1.5α)-sin(0.5α) ) + ( sin(2.5α)-sin(1.5α) ) + ( sin(3.5α)-sin(2.5α) )
 = sin(3.5α)-sin(0.5α)
のように、途中が打ち消しあって両端だけ残ります。
今回の問題では、0〜(n-1)α でこれをやれば、残った両端も消えて 0 になるという寸法です。
なお、かけている sin(α/2) が 0 かどうかにだけは注意してください。今回の問題では n=2 の時ですね。

あと、sin の和の時には
 cos(θ+φ)-cos(θ-φ)=-2sinθsinφ
を使えば同じ話になります。

No.18102 - 2012/07/23(Mon) 00:09:09
はさみうちの原理 / のんです
数列の極限の問題での途中計算についての質問です。よろしくお願いいたします。

[問題]
(1)(2)もあるのですが、お尋ねしたいのは(4)ですので、直接的には影響のないものと考え省略します。
(3)0 < Xn+1 - √2 <(1/2)*(Xn - √2)であることを示せ。
(4)lim(n→∞)Xnを求めよ。

[答案]
(3)よりn≧2のとき
0<Xn+1 - √2 < (1/2)*(Xn - √2) < (1/2)^2*(Xn-1 - √2)
< ... < (1/2)^n-1 *(X1 - √2)・・・?@

lim(n→∞)(1/2)^n-1 *(X1 - √2)=0 であるから
はさみうちの原理より
lim(n→∞)(1/2)*(Xn - √2)=0・・・?A
よって
lim(n→∞)(Xn - √2)=0・・・?B
したがって
lim(n→∞)Xn=lim(n→∞){(Xn - √2)+√2}=0+√2=√2

模範解答では、上記?@を証明した時点で、各辺は正なあので、
辺々に2を掛けて(または隣り合う項の関係を考えて)
0<Xn - √2 < (1/2)*(Xn-1 - √2)< ...
< (1/2)^n-1 *(X1 - √2)・・・?@'とし、
上記?Aを飛ばして、?Bを導いています。

ここで質問なのですが、上記?@→?A→?Bのように答えても大丈夫でしょうか。
特に?A→?Bですが、文言による説明なしでいきなり?Aから?Bを示して構いませんか。よろしくお願いします。

No.18081 - 2012/07/21(Sat) 18:24:21

Re: はさみうちの原理 / X
>>上記?@→?A→?Bのように答えても大丈夫でしょうか。
>>特に?A→?Bですが、文言による説明なしでいきなり?Aから?Bを示して構いませんか。

いずれも問題ありません。

No.18082 - 2012/07/21(Sat) 18:57:19

Re: はさみうちの原理 / のんです
Xさんへ

さっそくの回答ありがとうございました。
質問文中に「なので」を「なあので」とする間違いがあり、
申し訳ありませんでした。

No.18095 - 2012/07/22(Sun) 11:39:19
級数 / さい
次の級数の収束・発散を調べよ。

1+1/2+1/3^2+1/4^3+…

お願いします

No.18079 - 2012/07/21(Sat) 16:57:26

Re: 級数 / X
S[n]=Σ[k=1〜n]1/k^(k-1)
と置くと
{S[n]}は単調増加列 (A)
又、n≧3のとき、面積比較により
S[n]<1+1/2+∫[2→n]dx/x^2=2-1/n<2
∴{S[n]}は上に有界 (B)
(A)(B)より{S[n]}は収束します。

No.18087 - 2012/07/21(Sat) 23:19:11

Re: 級数 / ITVISION
1+1/2+1/3^2+1/4^3+… < 1+1/2+1/2^2+1/2^3+…
で評価しても良いかも。


No.18091 - 2012/07/22(Sun) 00:07:20
級数 / さい
次の級数の収束・発散を調べよ。

1-1/2+1/3-1/4+1/5…

No.18078 - 2012/07/21(Sat) 16:24:42

Re: 級数 / ITVISION
S(n)=1-1/2+1/3-1/4+1/5… 1/n とおく
 
S(2n)=1-1/2+1/3-1/4+1/5… -1/(2n)
=(1-1/2)+(1/3-1/4)+(1/5-1/6)+…(1/(2n-1)-1/(2n))はnが増加するにつれて増大 ∵各1/(2k-1) - 1/2k>0

また、S(2n)=1-(1/2-1/3)-(1/4-1/5)-… -1/(2n) < 1 であるから上に有界 ∵各1/2k - 1/(2k+1)>0

従って、lim[n→∞]S(2n)=Sが存在する。

ところが、S(2n+1)=S(2n) + 1/(2n+1) → S + 0 (n→∞)なので、結局lim[n→∞]S(n)=S である。収束する。(条件収束)いわゆる「ライプニッツの交代(交項)級数」の一種です。

No.18092 - 2012/07/22(Sun) 00:26:07
通過領域 / 気合
qが0で無い実数を動く時
2qx=y^2+q^2・・※が通過する領域を求めよ、で

※をqで微分してx=qこれを※に代入してy=±x
と求めておき、
解)
※にy=±xを代入すると(x−q)^2=0よってx=q
より※はy=±xと接するx軸に対称な放物線であり、接点のx座標がx=q(≠0)であることが分かった。
q≠0で動かすと、通過領域は下図の斜線部。(ただし境界は含むが原点は除く)(下図は載せてません)

ですがx軸に対称な放物線をy=±xに接するように書き、接点qをどんどん大きくしていくら放物線を書いても
放物線の凸性から塗られていない部分がありますよね。y=xの少し下、y=−xの少し上など計4箇所。これらの部分を塗りつぶせるかが少々疑念が残ります。何か方法はないのでしょうか?

別解は求めていません。よろしくおねがいします

No.18074 - 2012/07/20(Fri) 01:58:39

Re: 通過領域 / ヨッシー
ある放物線
 2qx=y^2+q^2 ・・・(1)
と、qをn倍した (n≠0)
 2nqx=y^2+n^2q^2 ・・・(2)
を考えます。(2) の両辺n^2 で割って整理すると、
 2q(x/n)=(y/n)^2+q^2
となり、これは、(1) を原点中心にn倍拡大した放物線となります。
※「任意の2つの放物線は相似である」を知っていれば、
ここまでの説明は不要です。

すると、原点を除く (y−x)(y+x)≦0の領域(下図の斜線部)上の
任意の点Pと原点を結ぶ直線は放物線2x=y^2+1(q=1の時の放物線)と
交点を持ちます。それを点Qとし、
 OP=qOQ
とすると、2qx=y^2+q^2 は、点Pを通ります。

No.18075 - 2012/07/20(Fri) 06:20:40

Re: 通過領域 / 気合
回答ありがとうございます。

質問1)
それを点Qとし、
 OP=qOQ
とすると、2qx=y^2+q^2 が、点Pを通るという理由が分かりません。

質問2)それが言える事で何が言えるのかが分かりません。

質問3)OP=qOQはどうやって導いたのか教えてください

よろしくおねがいします

No.18077 - 2012/07/21(Sat) 15:08:11

Re: 通過領域 / ヨッシー
回答1)
2qx=y^2+q^2 は、
2x=y^2+1 をq倍に拡大したものです。
2x=y^2+1 上の点Qを、原点からの距離をq倍に延ばした
点を点Pとすると、2qx=y^2+q^2 は、点Pを通ります。


回答2)
塗りつぶせない部分なんかないんだよ、ということが言えます。

回答3)
導くのではなくて、OQ に対する OP の長さの比率をqと
置いているだけです。
qがマイナスになることを考慮して、OPOQをベクトルにしています。

No.18080 - 2012/07/21(Sat) 17:02:33
(No Subject) / やまねこ
実数aに対し、数列{an}をa1=a,a(n+1)=a(n)(2-3a(n))(n=1,2,・・)で定める時,b(n)=(1/3)-a(n)とおいて、a(n)を求めよ。という問題で
b(n+1)=3b(n)^2・・?@が出てきました
しかしこの後logを取ってb(n)を求めてからa(n)を出そうと思ったのですが、解説には「logをとろうとするとb(n)≦0がありうるので場合わけが必要になり面倒です。とありました。(その理由により帰納法でやっていました)しかし?@の右辺≧0よりbn<0はありえないですよね?
?@からa(n)を出す方針の解法を教えてください。よろしくおねがいします

No.18049 - 2012/07/18(Wed) 19:18:06

Re: / ヨッシー
b(1)≦0 はあり得ますね。
また、b(1)=0 だと、b(n) の全項が0になります。

No.18052 - 2012/07/18(Wed) 22:43:05

Re: / やまねこ
正直その理由が全く分かりません。うーん。。もう少し具体的にお願いします><
No.18062 - 2012/07/18(Wed) 23:45:59

Re: / ヨッシー
b(1)=1/3ーa(1)=1/3−a なので、これが0以下ということもあり得ます。
そうすると、?@ を c(n)=log{b(n)} とおいて解こうとしても、
c(1) が決まらないので、そのままでは解けません。

No.18065 - 2012/07/18(Wed) 23:52:02

Re: / やまねこ
なるほど!確かにそのとおりですね。ならば答案はどのように再現したらよいのでしょうか?
b1は負の場合もありえますが、
a(n)自体も負の場合もありえるのですから
b(n)=(1/3)-a(n)もb1に限らず負の場合だってありえますよね?

No.18069 - 2012/07/19(Thu) 10:12:16

Re: / ヨッシー
>その理由により帰納法でやっていました
を踏まえた上で、場合分けしてでも log を取る方法でやりたい
というご質問と理解します。

a≠1/3 のとき、b(n)の第2項以降は正なので、log が取れます。
そこで最初に n≧2 に限った場合のa(n) を求める。
これが、a(1) に対しても成り立つ。
さらに、a=1/3 の時も成り立つ。
という作戦でどうでしょう?

No.18071 - 2012/07/19(Thu) 18:36:58

Re: / やまねこ
回答ありがとうございます
n≧2 に限った場合のa(n) を求める。
これが、a(1) に対しても成り立つ。
の部分が意味がよく分からないのですが、
なるだけ再現してみました

解答)
a(n+1)=a(n)(2-3a(n))(n≧1)
bn=1/3-an(n≧1)を代入して
整理するとb(n+1)=3{b(n)}^2(n≧1)・・?@
a1≠1/3のときb1≠0
?@より帰納的にb(n)>0(n≧1)
よって?@の両辺に対数を取って整理すると
b(n)=(1/3)(1-3a)^(2^(n-1))
よってa(n)=(1/3){1-(1-3a)^(2^(n-1))}
これはa1=1/3のときも成り立つので
a(n)=(1/3){1-(1-3a)^(2^(n-1))}・・答
であっていますでしょうか?よろしくお願いします

No.18073 - 2012/07/19(Thu) 20:04:09

Re: / ヨッシー
>?@より帰納的にb(n)>0(n≧1)
は、(n≧2) でのみ言えます。
そのあと、最終的に b(n)=(1/3)(1-3a)^(2^(n-1)) になるのですが、
それを、どう求めたかが問題です。
c(n)=log{b(n)}
d(n)=c(n)+log(3) と次々と置換していくと、
 d(n+1)=2d(n)
という等比数列になりますが、そのときに
 d(n)=d(1)・2^(n-1)
としたらダメです。d(1) は定義できない可能性があるので、
 d(n)=d(2)・2^(n-2) (n≧2)
とします。その後、c(n), b(n) と戻していって、
 b(n)=(1/3)(1-3a)^(2^(n-1)) (n≧2)
n=1 を代入すると、b(1)=1/3-a となり、n=1 のときも
b(n)=(1/3)(1-3a)^(2^(n-1)) は成り立つ。
また、a=1/3 のときも・・・あとは同じです。

No.18076 - 2012/07/20(Fri) 10:36:39
指数対数 / 西瓜
y=log[2](x+a) のグラフをC1とする。  ただし、aは定数とし、C1は点(3,3)を通る。

(1)a=(ア)
(2)C1をx軸方向に+2、y軸方向に+1だけ平行移動したグラフをC2とする。  C2を表す方程式は y=log[2](x+(イ))+(ウ)
C2が点(p.q)を通るとき、pをqで表すと p=2^(q-(エ))-(オ)
よってpが負の整数であれば、p=(カキ)、q=(ク) または p=(ケコ)、q=(サ)     ただし、(カキ)<(ケコ)
(3)(2)のC2のグラフをx軸に関して対象に移動して得られるグラフをC3とする。  このとき、C1とC3の交点のx座標は((シス)+√(セ))/(ソ)


答えはア5、イ3、ウ1、エ1、オ3、カ―、キ2、ク1、ケ―、コ1、サ2、シ―、ス8、セ6、ソ2

です。

ア〜オまではわかってのですが、
それからが分かりません

(2)の後半のqの値は、0は含まれないのですか?

問題部分が見難く、誤っている部分もあるかもしれませんが、説明のほどをよろしくお願いします。

No.18044 - 2012/07/18(Wed) 17:53:26

Re: 指数対数 / ヨッシー
p=2^(q-1)-3
より、pが負の整数になるのは、2^(q-1) が3未満の整数に
なるときで、2^(q-1)>0 より、それは
 2^(q-1)=1 または 2^(q-1)=2
のときで、q=1 のとき p=−2、q=2 のとき p=−1
となります。q=0 だと、p=-5/2 と整数になりません。

C1:y=log[2](x+5)
C3:y=-log[2](x+3)−1
を連立させて、
 log[2](x+5)=-log[2](x+3)−1
 log[2](x+5)+log[2](x+3)=−1
 log[2](x+5)(x+3)=−1
よって、(x+5)(x+3)=1/2
これを解いて
 x=(-8±√6)/2
となります。

No.18053 - 2012/07/18(Wed) 22:56:54

Re: 指数対数 / 西瓜
ヨッシーさん説明ありがとうございます!

2つ質問よろしいでしょうか?
pが分数でも良いような解答欄だった場合、q=0も含めていいんですよね?

>log[2](x+5)(x+3)=−1
>よって、(x+5)(x+3)=1/2


ここは、log[2]2に乗せたのですか?

2度もすみません。
また分かりにくいかもしれませんが、よろしくお願いします

No.18067 - 2012/07/19(Thu) 05:03:47

Re: 指数対数 / ヨッシー
>pが分数でも良いような解答欄だった場合、q=0も含めていいんですよね?
それを言い出せば、q=log[2]5 のとき、p=-1/2 なんてのもありになります。
そもそも、「pが負の整数であれば」と書いてあるので、q=0 という
選択肢は出てきません。

>ここは、log[2]2に乗せたのですか?
log[2]x=−1 の解は x=1/2 だというだけです。

なお、上で書き忘れましたが、
 x=(-8±√6)/2
のうち、真数条件を満たすのは x=(-8+√6)/2 のみです。
解答には影響ありませんが。

No.18068 - 2012/07/19(Thu) 06:12:35
全22740件 [ ページ : << 1 ... 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 ... 1137 >> ]