[ 掲示板に戻る ]

過去ログ閲覧モード

位置ベクトルの問題 / たまごん
こんばんわ!一つ分からない問題があったのでお聞きしたいです。

四面体ABCDにおいて、AB、CB、AD、CDを1:2に内分する点を、それぞれP、Q、R、Sとするとき、四角形PQRSは平行四辺形であることを示せ。

位置ベクトルを利用してPQ↑=RS↑を示すということですが、そこまでの過程が分かりません。
できれば位置ベクトルの説明からしていただければ幸いです。

No.12423 - 2010/12/14(Tue) 23:33:11

Re: 位置ベクトルの問題 / 板橋
平行四辺形の定義は、『2組の対辺がそれぞれ平行』のはずなのですが・・・。
AB↑=b↑,AC↑=c↑,AD=d↑とすると、
PR↑=QS↑=(d↑-b↑)/3
PQ↑=RS↑=2c/3↑
であるので、PR‖QS,PQ‖RS
従って、四角形PQRSは平行四辺形である。

次に位置ベクトルの定義に関してですが、
http://www.ravco.jp/cat/view.php?cat_id=6612
によれば、
 平面上で,基準とする点 O をあらかじめ定めておくと,任意の点 P の位置は
p↑=OP↑
というp↑によって表すことができる.
このp↑ を,点 O に関する点 P への位置ベクトルという.

No.12427 - 2010/12/15(Wed) 01:54:44
微分方程式 / かるた
実は電気回路の問題なのですが
L(dI/dt)+RI=U(Uは直流起電力、Iは電流、Rは抵抗、Lは自己インダクタンス)
スイッチを入れてからの過渡現象という感じです。

この微分方程式をとくと、
初期条件t=0のときI=0よりI=(U/R)(1-e^(-Rt/L))なのですが、途中経過を誰か教えて下さい。よろしくお願いします。

No.12421 - 2010/12/14(Tue) 19:00:40

Re: 微分方程式 / 板橋
L(dI/dt)+RI=U⇔d(I-U/R)/dt=-R(I-U/R)/Lであるので、
I-U/R=Ae^(-Rt/L) (Aは積分定数)
ここで初期条件t=0のときI=0より、
A=-U/R
∴I=(U/R)(1-e^(-Rt/L)

No.12425 - 2010/12/15(Wed) 00:42:31
(No Subject) / 壱
y=a^2cos^2x+b^2sin^2x の微分をお願いします。
2倍角とか三角関数がよく分からなくて混乱します。
途中式もお願いします。

No.12418 - 2010/12/14(Tue) 01:28:43

Re: / ヨッシー
合成関数の微分ですね。
 yがuの関数、uがxの関数であるとき
 dy/dx=dy/du×du/dx
というのが公式です。
 y=a^2cos^2x
については、y=a^2u^2、u=cosx とおくと、このケースになります。
 dy/du=2a^2u、du/dx=-sinx
であり、dy/du=2a^2u=2a^2cosx と書けるので、
 dy/dx=2a^2cosx(-sinx)
このままでもいいですが、2倍角の公式
 sin2x=2sinxcosx
を適用すると、
 dy/dx=-a^2sin2x
となります。同様に、
 y=b^2sin^2x
については、
 dy/dx=b^2sin2x
となり、y=a^2cos^2x+b^2sin^2x の微分は、
 dy/dx=(b^2−a^2)sin2x
となります。

No.12420 - 2010/12/14(Tue) 06:39:09

Re: / 壱
理解できました。
ヨッシーさん
丁寧に回答いただき
ありがとうございます。

No.12422 - 2010/12/14(Tue) 22:32:51
(No Subject) / ぴっぴ
周期2πの周期関数f(x)のフーリエ係数は
An=1/π∫(−π〜π)f(x)cosnxdx(n=0,1,2・・)とあるのですが、この実践問題の計算過程でcos(nπ)というのが出てきたのですが、これってn=0,1,2・・・なので(−1)^(n-1)なのでしょうか?でもフーリエ級数の方はnが1から∞とあるし・・・n=0からと(つまりcosnπ=(-1)^(n-1))n=1から(つまりcosnπ=(-1)^n)どっちを採用したらいいのでしょうか?

No.12417 - 2010/12/13(Mon) 23:27:58

Re: / フリーザ
フーリエ級数展開の計算ですね。
cosnπ=(-1)^n(n∈N)ですのでどちらを採用とかっておかしい話です。

No.12428 - 2010/12/15(Wed) 09:02:15

Re: / ぴっぴ
An=1/π∫(−π〜π)f(x)cosnxdx(n=0,1,2・・)とあり、この計算過程でcosnπが出てきた場合n=0から始まるので、1、−1,1、−1、・・・となりcosnπ=(-1)^(n-1)となるのですが・・・?
No.12437 - 2010/12/16(Thu) 09:49:39

Re: / ast
なんだかよくわかりませんが,
> 1, -1, 1, -1, ...
という数列の一般項 (初項を 1 番目と数えたときの第 n 項) は (-1)^(n-1) だろうというご主張ですか? しかし, ご自身で仰るように
> n=0から始まるので
初項は 1 番目の項ではなく 0 番目の項なのですから, これは正しくありません. 1 から数え始めて n 番目の項が第 n 項となるような数列 a_n = (-1)^(n-1) のために変数 n を用いたいのであれば, cos(nπ) と書かずに cos(mπ) のように文字を n でないものに変更し, m は 0 から開始するものとして n=m+1 あるいは m=n-1 の関係があるものとしなければなりません. そうすれば, cos(mπ)=(-1)^(n-1) が正しい関係式を与えることになります (文字は m, n でなくても, 異なるということをきちんと意識できていれば, 何を使っても構いません. 特に, 逆でもいいです).

なんにせよ, 既に指摘があるように,

 cos(0π) = 1 = (-1)^0
 cos(1π) = -1 = (-1)^1
 cos(2π) = 1 = (-1)^2
 ……
 cos(kπ) = (-1)^k
 ……

であることは, フーリエ級数・フーリエ係数とは無関係であり, 変わったりしません.

No.12439 - 2010/12/16(Thu) 16:22:33
(No Subject) / 遥
2で割ると1余り、3で割ると2余り、5で割ると3余る数は2,3,5の最小公倍数の30ごとに繰り返すはずである。という記述があったのですが、これって何で何でしょうか?確かにがむしゃらに実験したらそうなってはいるので認めざるを得ないのですが・・・。よろしくオネガイします。
No.12412 - 2010/12/13(Mon) 00:24:38

Re: / rtz
この問題の場合、
解く過程で最小の自然数として23が出てきますが、
この23は当然2で割って1余る数ですから、
次以降の候補は、2を何回か足した数(2の倍数を足した数)であるはずです。
同様に3や5の場合も、次の候補は3や5の倍数をそれぞれ足した数です。

つまり、
「23」に「2の倍数であり3の倍数でも5の倍数でもある数」、
即ち「2,3,5の公倍数」を足した数が条件を満たします。
公倍数は最小公倍数の倍数ですので、今回の場合は30ごとに繰り返すことになります。

No.12413 - 2010/12/13(Mon) 00:48:48

Re: / らすかる
2で割ると1余る数は2個に1個のペースで出現します。
3で割ると2余る数は3個に1個のペースで出現します。
5で割ると3余る数は5個に1個のペースで出現します。
これを図で表すと
2:○−○−○−○−○−○−○−○−○−○−○−○−○−○−○−○−
3:○−−○−−○−−○−−○−−○−−○−−○−−○−−○−−○−
5:○−−−−○−−−−○−−−−○−−−−○−−−−○−−−−○−
のようになりますから、30ごとに繰り返します。実際、
「2で割ると1余る数」に30を足した数を2で割ると1余り、
「3で割ると2余る数」に30を足した数を3で割ると2余り、
「5で割ると3余る数」に30を足した数を5で割ると3余りますね。

No.12414 - 2010/12/13(Mon) 00:49:22
(No Subject) / とくめい
導関数を求める問題です。

y=[{1-x^(1/4)}/{1+x^(1/4)}]^1/2

対数をとり
logy=1/2[log{1-x^(1/4)}-log{1+x^(1/4)}]

両辺微分して
y'/y=1/2[-1/4x^(3/4)/{1-x^(1/4)}-
1/4x^(3/4)/{1+x^(1/4)}]
=-1/8x^(3/4)[1/{1-x^(1/4)}+1/{1+x^(1/4)}]
=-1/4x^(3/4)[1/{1-x^(1/2)}]

合っているかは分かりませんが、
ここまでなんとかしましたが
ここから先が上手くまとまりません。
どなたか助けてください。

No.12404 - 2010/12/12(Sun) 23:01:14

Re: / angel
うーん。
t=x^(1/4) とでも置いて、dy/dx=dy/dt・dt/dx という合成関数の微分を考えた方が楽じゃないでしょうかね。

No.12409 - 2010/12/12(Sun) 23:37:53

Re: / 壱
angelさんコメントありがとうございます。
できれば具体的な回答をしていただけると
ありがたいです。

No.12466 - 2010/12/21(Tue) 20:43:10

Re: / angel
…具体的、とは?
dy/dt や dt/dx の計算のやり方が分からないということ?
それとも、合成関数の微分の公式 dy/dx=dy/dt・dt/dx が良く分からないということ?

それと、当初の貴方の計算とは全く方針が違うので、「先が上手くまとまらない」の直接の解決策ではないのですが、それは問題ないのでしょうか?

No.12473 - 2010/12/23(Thu) 00:25:06
(No Subject) / 遥
0〜30までの数で2,3,5で割り切れる数は●でぬりつぶすことにすると、2,3,5で割り切れない数が左右対称のならびに何故かなります。さらにその左右対称なものの対称なもの同士の組、例えば(1,29)(7、23)などは足したら何故か30になります。これらのちゃんとした理由を誰か教えてくれませんか。よろしくオネガイします。
No.12403 - 2010/12/12(Sun) 21:41:59

Re: / angel
2,3,5いずれでも割り切れない数を x とします。
ここから 30 を引いても、30は2,3,5の公倍数なので、やっぱり x-30 は2,3,5いずれでも割り切れません。
※証明するなら背理法で。
 例えばx-30が2で割り切れると仮定すると、
 あるnに対してx-30=2n、ということはx=2n+30=2(n+15) と表せるため、
 xが2で割り切れないことに矛盾します。

続いて、x-30 に (-1) をかけた 30-x もやっぱり2,3,5いずれでも割り切れません。

ということで、x に対して 30-x という、割り切れない数のペアができることになります。

No.12405 - 2010/12/12(Sun) 23:17:31

Re: / ヨッシー
15をはさんで、対称な位置にある2数は、
片方が 15-n とすると、もう一方は 15+n と表せます。
(15から等距離にあるので、こうなります)
すると、足して30になることは明白です。

すると、15をはさんで、対称な位置にある2数の
片方を、k とすると、もう一方は、30-k です。
もし、kが2で割れると、k=2mと書けるので、
30-k=30-2m=2(15-m) となり、30-k も2で割れます。
一方、kが2で割り切れないとすると、k=2m+1 と書けて、
30-k=2(15+m)+1 となり、30-k も2で割り切れません。
3,5についても、同様のことが言えればいいでしょう。

No.12407 - 2010/12/12(Sun) 23:21:31

Re: / 遥
angelさん、ヨッシーさんありがとうございました。よく分かりました!
No.12411 - 2010/12/13(Mon) 00:20:41
地球の重さ / √
どうでも いいこと ですが。
もし、分ったら教えてください。
(こんな時期に、受験生のみなさんの邪魔してすみません)

地球上の人間の数が、どんどん増えていったら、
地球全体の重さは重くなっていくのでしょうか?

No.12398 - 2010/12/10(Fri) 20:45:09

Re: 地球の重さ / angel
その「増えた人間」がどこから来たものか…
私達の体が何からできているか、それを考えてみては。

あ、もちろん「宇宙人(便宜上人間に分類する)」が沢山来たら、地球全体の質量は増えていくでしょうね。

No.12400 - 2010/12/11(Sat) 23:35:17

Re: 地球の重さ / √
angelさん
こんな質問に答えてくださり、有り難うございます。

私達の体の成分は、水やタンパク質etcですね。

人間という言い方をしてしまい、少し誤解を招いてしまいました。
えーと、人間の増加だけでなく、
今は沢山の高層ビルなどが作られていますが、
この材料は、元々、地球にあった物で作られているので
地球全体の重さは変らないのかなぁ〜とも思いました。

人間にしても、人間が増えれば食べ物が減り・・・と、
何かが増えた分、何かが減っているはずで、
他の星から、何かを持って来たり、逆に持って行かなければ
と・・・・・

(ただし、いん石とか宇宙に飛ばしてしまった人工衛星などは無視して考えるとします)

結局は、どーでもいい質問なんですけど興味がありましたら
教えてください。

No.12401 - 2010/12/12(Sun) 00:55:27

Re: 地球の重さ / angel
> 地球全体の重さは変らないのかなぁ〜とも思いました。

基本はそれで良いと思います。
※厳密に言えば、地球の大気も僅かずつ宇宙に漏れているはずで、トータルではマイナスなんでしょうけど。

> 人間にしても、人間が増えれば食べ物が減り・・・と、何かが増えた分、何かが減っているはずで、

そこはそれ食物連鎖や物質循環というものがありまして。
人間が消費した食物は、排泄された後分解されて植物の養分となって、そこから動物に食べられるかもしれませんが、巡り巡ってまた食物とすることができます。

人間なり特定の動物が増えて困るとすれば、需要・供給のバランスが崩れて、その「循環」が上手く回らなくなること。決して物質の総量が減るわけではないのです。

No.12408 - 2010/12/12(Sun) 23:31:34

Re: 地球の重さ / √
angelさん 有り難うございました。

地球の中で、どんな変化が起こっても、
変化前と変化後の重さは変らない「質量保存の法則」が
働いているのですね。

余談ですけど、
今、不景気ですけど、お金全体の総量は変ってないはず、
ですね。

No.12415 - 2010/12/13(Mon) 12:34:40

Re: 地球の重さ / らすかる
細かいことを言うと、質量がエネルギーに変わったり
その逆が起こったりしますので、
地球の系が閉じていると考えても一定ではないと思います。
現実的には、増減どちらでしょうね?
太陽光線とか太陽風とかで増えてたりしないでしょうか。

No.12416 - 2010/12/13(Mon) 17:37:03

Re: 地球の重さ / √
らすかるさん 有り難うございました。

らすかるさん説も考えてみます。

増減があったとしても、
その増減は、地球の重さに比べたら、きっと誤差範囲程度なんでしょうね。

No.12419 - 2010/12/14(Tue) 02:08:47
(No Subject) / ハム
P(x,y), x=(1-t^2)/(1+t^2), y=(4t)/(1+t^2) のとき,Pの速度ベクトルの大きさが最大になるときのtの値を求めよ。
という問題がわかりません。
大きさの公式に入れて微分すると4乗や分数が出て複雑な式になってしまい困っています。
よろしくお願いします。

No.12395 - 2010/12/09(Thu) 20:43:50

Re: / angel
tのままで計算するのは大変そうなので、形からすると t=tanθ と置換して考えるのが良いのではないでしょうか。

t=tanθ の両辺を t で微分することで、1=dθ/dt・1/cos^2θ
となり dθ/dt がθの式として表せますし、
dx/dt=dx/dθ・dθ/dt, dy/dt=dy/dθ・dθ/dt という関係からも、色々とθの式でまとめられます。

No.12406 - 2010/12/12(Sun) 23:21:31
(No Subject) / ばるたん
インテグラルとlimや?狽フ入れ替えが出来るのはその中身が一様収束しているときだとあったのですが、一様収束ってどういうことですか?
No.12394 - 2010/12/09(Thu) 20:14:47

Re: / らすかる
I⊂R fn,f:I→R として、{fn}がfにI上一様収束するとは
∀ε>0 ∃n0∈N ∀x∈I ∀n∈N [n≧n0 ⇒ |fn(x)-f(x)|<ε]
が成り立つことです。(出典:Wikipedia「極限」)

No.12397 - 2010/12/10(Fri) 11:16:07

Re: / ばるたん
簡単な例を挙げて説明してもらえたらありがたいのですが・・・
No.12402 - 2010/12/12(Sun) 21:26:59

Re: / らすかる
例えば I=(0,1), fn(x)=x^n とすると
n→∞のときfn(x)→0に収束しますが
1付近で一様収束の定義を満たしません。

No.12410 - 2010/12/12(Sun) 23:40:19

Re: / フリーザ
一様収束ってのは関数がいっせいにある関数に収束するイメージで、各点収束はxを固定したときにnを都合よくとれば収束するといっているので一様収束のほうが強い概念になるわけです。
論理記号でn0がxに依存しないで存在すると書いてありますので、納得できるかと思います。

No.12429 - 2010/12/15(Wed) 09:10:25
高3です。 / ren
初めて質問させていただきます。
今、『9の9乗+2で割った時の余りはいくつか』という問題に行き詰っています。
解決策を模索した結果、二項定理とか色々方法があるそうですが私が習ったことがあるのは二項定理のみなのでこれを用いることができるかどうかやってみましたが分かりませんでした。
どうか解説お願い致します。

No.12386 - 2010/12/07(Tue) 19:19:56

Re: 高3です。 / 板橋
『9の9乗+2で割った時の余りはいくつか?』という事ですが、『9の9乗を2で割ったときの余りはいくつか?』の間違いでは?
『9の9乗を2で割ったときの余りはいくつか?』という問題だと解釈して、お答えしたいと思います。
二項定理より、9^9=(8+1)^9=8*整数+1^9であるので、2で割ったときの余りは、1となります。

参考までに・・・
『合同式』というものを検索してみて下さい。

No.12387 - 2010/12/07(Tue) 20:19:04

Re: 高3です。 / らすかる
もし「2で割った時の余り」なら、
9×9×9×9×9×9×9×9×9 は当然奇数なので
計算するまでもなく1とわかると思いますが…

No.12388 - 2010/12/07(Tue) 20:53:16

Re: 高3です。 / ren
ありがとうございます。
すみません。とんでもない問題ミスをしてしまいました。

『9^9+2を8で割った時、余りはいくつか』
です。

合同式を調べてみます。

No.12389 - 2010/12/07(Tue) 21:45:36

Re: 高3です。 / ヨッシー
合同式も良いですが、板橋さんの記事で、答えが出てますね。
No.12390 - 2010/12/07(Tue) 22:09:49

Re: 高3です。 / ren
ありがとうございます。
『二項定理より、9^9=(8+1)^9=8*整数+1^9であるので、2で割ったときの余りは、1となります。』

まだ、ちんぷんかんのようです。
これはどういう式なのでしょうか。(特に『整数』??)

No.12391 - 2010/12/07(Tue) 22:25:31

Re: 高3です。 / ヨッシー
(8+1)^9 を二項定理で展開すると、
9C0・8^9+9C1・8^8+9C2・8^7+・・・+9C8・8^1+9C9・1
ですが、最後の 9C9・1 以外は、全部8が掛けられているので、
9C0・8^9+9C1・8^8+9C2・8^7+・・・+9C8・8^1 をまとめて、
8×整数 とおいたのです。整数という書き方に抵抗があるなら、
 8n (ただし、nは整数)
と考えればいいでしょう。

で、8n+1 に2を足したものを、8で割るのですから・・・

No.12393 - 2010/12/07(Tue) 22:35:01

Re: 高3です。 / ren
返信が遅くなってすみません。
整数という書き方にとらわれてしまいました。
板橋さん、らすかるさん、ヨッシーさんありがとうございました。

No.12399 - 2010/12/11(Sat) 14:08:53
三角形の外心 / 高1アメ
AB=AC=9, BC=6の二等辺△ABCの外心をOとする。この時,AOの長さを求めよ。

期末考査に出てきたのですが全然わかりません。どなたか教えて下さい。中点連結定理を使うのか迷ったのですが…

No.12381 - 2010/12/06(Mon) 22:37:40

Re: 三角形の外心 / ヨッシー
単元によりますが、正弦定理に持って行くのが1つの方法です。
余弦定理より、
 cos∠BAC=(81+81−36)/(2・9・9)=7/9
よって、
 sin∠BAC=4√2/9
正弦定理より、
 2AO=BC/sin∠BAC=27√2/4
よって、
 AO=27√2/8

No.12383 - 2010/12/06(Mon) 22:42:48
(No Subject) / nana
xに関する方程式 4^x-a*2^(x+1)+b(1-b)=0 について、次の問いに答えよ。ただし、a, bはともに実数である。

(1) 2つの解をもち、解が log2の3 と -4 であるとき、a, bの値を求めよ。

4^x=2^(2x)=(2^x)^2
2^(x+1)=2・(2^x)であるから
2^x=Xとおくと
X^2-2aX+b(1-b)=0
x=log[2]3が解になるということは、X=2^(log[2]3)=3が解になるということで、
x=-4が解になるということは、X=2^(-4)=1/16が解になるということである。
よって、解と係数の関係より
2a=3+1/16 よって、a=49/32
b(1-b)=3/16
⇔16b^2-16b+3=0
⇔(4b-1)(4b-3)=0 よって、b=1/4またはb=3/4

(2) 2つの異なる実数解をもつためのa, bの満たすべき条件を求めよ。また、求めた条件を満たす点(a, b)の領域を図示せよ。

と、(1)は分かったのですが、(2)が分かりません…
お願い致します…!

No.12376 - 2010/12/06(Mon) 19:26:08

Re: / rtz
X=2xとしたのですから、X>0に注意して、
4x-a*2x+1+b(1-b)=0が2つの異なる実数解を持つ
⇔X2-2aX+b(1-b)=0がX>0の範囲で2つの異なる実数解を持つ
とすれば、よくある2次関数の問題になりますね。

蛇足ですが、
2xを他の文字に置き換えるとき、
大文字Xはやめた方が無難だと思います。
Xは比較的大文字小文字の字形が似ているので、
「これどっち書いてたっけ?」とあとで混乱したり、採点者も迷うことになりかねません。
別の文字にしたほうが安全かと思います。

No.12377 - 2010/12/06(Mon) 19:39:01

Re: / nana
なるほど!そういうことでしたか…!
Xは止めた方がいいですか…混乱したら困りますものね;
ご指摘、ありがとうございました!

No.12378 - 2010/12/06(Mon) 20:57:05
(No Subject) / かるび
フーリエ級数展開から、フーリエ余弦展開を導く方法を教えて下さい。
No.12374 - 2010/12/06(Mon) 00:10:08
数B185 高1です。 / yodaka

こんばんは。
等差数列の問題です。

問題
次のような等差数列の和をもとめよ。
(1)初項1、公比2、末項64
(2)初項162、公比-1/3、末項2

ここで質問です。
(1)では

     S[n]=a(1-r^n)/1-r・・・?@
の公式が使われていて
(2)では

     S[n]=a(r^n-1)/r-1・・・?A
の公式が使われていました。

どんな時に?@を使って
どんなときに?Aを使うのですか?

よ考えたのですが分かりませんでした;;
単純な問題かもしれませんが
よろしくお願いします。

No.12370 - 2010/12/05(Sun) 20:59:12

Re: 数B185 高1です。 / ヨッシー
(a-b)/(c-d) と (b-a)/(d-c) が等しいように、
?@と?Aは同じ式ですので、どちらを使っても同じ結果になります。

私なら、(1) には ?Aを使いますね。
?@を使うと、(項数7はあらかじめ求めておいて)
 S=(1−2^7)/(1-2)=-127/(-1)=127
?Aを使うと
 S=(2^7-1)/(2-1)=127/1=127
と、マイナスの計算をしなくてすみます。

その意味では、(2) は?@を使います。

そんなことより、このように、末項が与えられているときは、
これらの公式ではなくて、
a[n] は公比rの等比数列の場合
 S=a[1]+a[2]+・・・+a[n] ・・・(3)
両辺r倍して、
 rS=a[2]+・・・+ra[n] ・・・(4)
(4)−(3)
 (r-1)S=ra[n]−a[1]
 S=(ra[n]−a[1])/(r-1)
または
 S=(a[1]−ra[n])/(1-r)
を使えば、項数を求める必要がありません。

ちなみに、私は、等比数列の和の公式は覚えていません。
(上のようにして、すぐに作れるので)

No.12371 - 2010/12/05(Sun) 21:19:39

Re: 数B185 高1です。 / yodaka

どっちも使えるんですね!!
 S=a[1]+a[2]+・・・+a[n] ・・・(3)
両辺r倍して、
 rS=a[2]+・・・+ra[n] ・・・(4)

のところなんですが、
両辺r倍して
 rS=ra[1]+ra[2]・・・+ra[n]

にならないのが何故なのか、
ご説明願えないでしょうか?

No.12379 - 2010/12/06(Mon) 21:35:34

Re: 数B185 高1です。 / ヨッシー
r・a[1] は a[2] と等しいですね?

 S=a[1]+a[2]+・・・+a[n-1]+a[n] ・・・(3)
両辺r倍して、
 rS=r・a[1]+r・a[2]+・・・+r・a[n-1]+r・a[n]
   =a[2]+a[3]+・・・+a[n]+r・a[n] ・・・(4)
と書けばわかりますか?

No.12380 - 2010/12/06(Mon) 22:26:53
(No Subject) / ラムネ
 1冊の問題集を決められた日数で終わらせることにした。1日に5題ずつ解くと110題残り、1日に9題ずつ解くと予定日の前日に6題以上解いて、その日に終わることになる。決められた日数は何日か求めなさい。
No.12365 - 2010/12/05(Sun) 13:08:46

Re: / ラムネ
忘れましたが、不等式の問題です。
No.12366 - 2010/12/05(Sun) 13:10:38

Re: / 板橋
決められた日をxとすると、
問題数は、5x+110とおけます。
また、「1日に9題ずつ解くと予定日の前日に6題以上解いて、その日に終わる」ということより、一日に9題解いた場合、予定日の前日には、6題以上8題以下の問題が残っているとわかります。以上のことを不等式で表すと、
9(x-2)+6<=5x+110<9(x-1)
となり、これを解くと、x=30となります。

No.12368 - 2010/12/05(Sun) 15:53:59
方程式 / ドドラ
赤線を引いたところでx-1で割っていますが、0では割れないから、x-1=0のときとそうでないときで場合分けが必要なのではないでしょうか?
解答のようにそのままx-1で割っていいのですか?

No.12361 - 2010/12/05(Sun) 10:24:34

Re: 方程式 / ヨッシー
「割る」という言い方に、語弊があるかも知れませんが、
たとえば、
 (x-1)(x^2+bx+2)=(x-1)(ax^2+2x+c)
が、恒等的に成り立つには?と聞かれれば、
 (x^2+bx+2)=(ax^2+2x+c)
を調べますね?
x=1 の時は、成り立つのは明らかですが、それ以外の
あらゆるxについても成り立つことを調べるわけです。

形としては、x-1 で割った形になっていますが、決して、
0で割ることを許しているわけではありません。

No.12362 - 2010/12/05(Sun) 12:29:48

Re: 方程式 / らすかる
おそらく、大学入試までのこの手の問題においては
「g(x)も普通の多項式である」という暗黙の前提があるのでしょう。
その前提の上では、x^3f(x)=(x-1)g(x)は恒等式ですから
展開した時にまったく同じ多項式になり、
左辺が(x-1)P(x)という形になればP(x)とg(x)もまったく同じ形で
P(x)=g(x)が成り立ちます。
よって(x-1)で割っても問題なく、x-1=0を考慮する必要はありません。

g(x)が“普通の多項式”でない場合は、確かにx-1で割れません。
例えば f(x)=x^2+2x-3 として、g(x)は
g(x)=
x^4+3x^3 (x≠1)
1 (x=1)
のように場合分けで定義された関数だとすると
x≠1のとき
左辺は x^3(x^2+2x-3)=x^5+2x^4-3x^3
右辺は (x-1)(x^4+3x^3)=x^5+2x^4-3x^3
x=1のとき
左辺は x^3(x^2+2x-3)=0
右辺は (x-1)*1=0
となり、問題の条件を満たしています。
この場合はf(x)=x^2+2x-3なのでc≠a-1であり、
(2)の答えと合いません。

No.12364 - 2010/12/05(Sun) 13:05:19

Re: 方程式 / angel
率直に言って、「割る」という言葉は不適切だと思います。
結果的には一緒だとしても。まあ、(x-1)の項が邪魔だったんでしょうけどね。

(x-1)( g(x)-x^3(ax+a+b) )=0 より、g(x)=x^3(ax+a+b) は x に関する恒等式

といったような表現にしておけば、ツッコミ所もないと思うのですが。

No.12367 - 2010/12/05(Sun) 13:46:15

Re: 方程式 / ドドラ
納得しました。
ありがとうございました!

No.12369 - 2010/12/05(Sun) 20:43:30
小6受験生 / ぜっとん
   ある中学校の二年生の総数は225人である。ある日の出席率は、1%未満を四捨五入すると97%であった。この日の出席者数を求めなさい。 
  どんな不等式を立てればいいですか。

No.12359 - 2010/12/04(Sat) 18:58:24

Re: 小6受験生 / らすかる
まず ○%≦出席率<○%
という不等式を立てて辺々に人数を掛けます。

No.12360 - 2010/12/04(Sat) 22:19:44

Re: 小6受験生 / ぜっとん
     ○%≦出席率<○%を、どう立てたらいいのですか?  具体的に教えてください。
No.12372 - 2010/12/05(Sun) 22:05:31

Re: 小6受験生 / ヨッシー
出席率は、1%未満を四捨五入すると97%
と言うことは、出席率は、いくつ以上いくつ未満ですか?

No.12373 - 2010/12/05(Sun) 23:05:51

Re: 小6受験生 / ぜっとん
96.5%以上97.5%未満ですか?
No.12384 - 2010/12/06(Mon) 23:35:39

Re: 小6受験生 / ヨッシー
すると
○%≦出席率<○%
という不等式になりますね。
あとは、出席者=総数×出席率 なので、
総数×○%≦総数×出席率<総数×○%
の形に持って行くと、
 □人≦出席者数<□人
のように、出席者の範囲がわかります。

当てはまる出席者数は、2つあります。

No.12385 - 2010/12/06(Mon) 23:48:09
三角関数の問題 / hiro
現在高2です。この問題の解き方がわかりません。

0≦x≦2のとき、f(x)=sinθ+3cosθの最大値を求めよ。
またそのときのtanθの値を求めよ。

よろしくお願いします。

No.12352 - 2010/12/04(Sat) 15:18:54

Re: 三角関数の問題 / かるび
0≦x≦2は誤植でしょうから、無視すると
f(θ)=sinθ+3cosθは
ベクトル(3 1)とベクトル(cosθ sinθ)の内積で、
内積が最大になるのは二つのベクトルが同じ方向に重なるときで最大値は√10となります。(ベクトル(cosθ sinθ)の大きさは1、ベクトル(3 1)の大きさは√10)このときtanθ=1/3です。

No.12356 - 2010/12/04(Sat) 16:42:10
(No Subject) / かるび
1)関数f(x)=(1/π)+1(−π≦x≦0)、1(0≦x<π)
を繰り返してR全体に拡張した関数もf(x)と書くことにする。f(x)のフーリエ級数展開を求めよ。

2)関数f(x)=e^x(0<x<π)のフーリエ余弦展開を求めよ。

このフーリエというやり方を知っている人が居ましたら、どなたかやり方をお願いします。

No.12351 - 2010/12/04(Sat) 15:12:58
全22528件 [ ページ : << 1 ... 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 ... 1127 >> ]