[ 掲示板に戻る ]

過去ログ閲覧モード

確率の問題です / Kay(高3女子)
確率の問題ですが、複雑な場合分けとなりそうで、混乱して分かりません。よろしくお願いします。


[設問]箱の中にAと書かれたカード、Bと書かれたカード、Cと書かれたカードがそれぞれ4枚ずつ入っている。男性6人、女性6人が箱の中から1枚ずつカードを引く。ただし、引いたカードは戻さない。
(1)Aと書かれたカードを4枚とも男性が引く確率を求めよ。
(2)A、B、Cと書かれたカードのうち、少なくとも1種類のカードを4枚とも男性または女性が引く確率を求めよ。

(1)からして分からず、(2)は「少なからず」とあることから余事象かな、「または」とあることから和の法則かなと読み取れるくらいでお手上げです。どうかよろしくお願いいたします。

No.12321 - 2010/11/28(Sun) 14:06:07

Re: 確率の問題です / ヨッシー
こちらに同じ質問がありますので、まずお読みください。
No.12322 - 2010/11/28(Sun) 14:58:32
(No Subject) / maru
先日河合模試の講評が返ってきたのですが、いわゆる「バームクーヘン公式」を使うには、この公式の証明が必要とありました。(ただし、≒(ほぼ等しいと言う記号を用いている)、「このように近似される」というような表現は認めない)誰か証明方法を知ってる方いらっしゃいませんか?
No.12319 - 2010/11/28(Sun) 10:27:46

Re: / soredeha
dS/dx=f(x) と同じです。

y=f(x)
V=V(x)
S=πx^2
M=max[a.a+Δx]f(x), m=min[a,a+Δx]f(x) とすると
mΔS≦ΔV≦MΔS
mΔS/Δx≦ΔV/Δx≦MΔS/Δx
Δx → 0 とすると
V'(a)=f(a)dS/dx=f(a)*2πa
V'(x)=2πxf(x)

No.12340 - 2010/12/01(Wed) 03:22:13
最大 最小 / kanna
面積が1であるような長方形ABCDを考える。また,tを0<t<1/√2なる実数とし,長方形ABCDの辺BC上に点EをBE:EC=t:(1-t)となるようにとり,辺DA上に点FをDF:FA=2t^2:(1-2t^2)となるようにとる。四角形ABEFの面積をS1,四角形CDFEの面積をS2とする。

(1)S1をtを用いて表せ。

(2)tの値が変化するときS1の最大値を求めよ。

(3)tの値が変化するときS2/S1のとりうる値の範囲を求めよ。


この問題の考え方がわかりません。
途中式等詳しく説明して欲しいです。
よろしくお願いします。

No.12316 - 2010/11/27(Sat) 09:58:37

Re: 最大 最小 / 板橋
仮定より、AB=1/a,BC=a,AF=a(1-2t^2),BE=atとおける。
(1)S1=(AF+BE)*AB*1/2=(1+t-2t^2)*1/2=-(t-1/4)^2+9/16
(2)0<t<1/√2で、S1の最大値を求めると、9/16(t=1/4)
(3)S1+S2=1であるので、S2/S1=1/S1-1
また、1/2√2<S1<=9/16であるので、
7/9<=1/S1-1<2√2-1

No.12318 - 2010/11/27(Sat) 18:13:16
(No Subject) / jyoona
確立の問題でnPrやnCrを使いますが、これは計算機があるときでしかできません。
計算機を使わない方法ってなんでしたっけ?
なにか、分数を足したりかけたりする記憶があるんですが・・・
お願いします!

No.12311 - 2010/11/24(Wed) 14:59:53

Re: / ヨッシー
こちらをご覧ください。
No.12313 - 2010/11/24(Wed) 23:15:33

Re: / jyoona
ありがとうございました!
No.12315 - 2010/11/25(Thu) 00:17:59
三平方の定理の逆方向 / √
もう一つ教えてください。

「直角三角形」ならば必ず「三平方の定理」が成り立ちますが、
ある三角形が、計算上「三平方の定理」の計算と一致したら、その三角形は、必ず「直角三角形」のはずですか?

よろしくお願い致します。

No.12299 - 2010/11/23(Tue) 13:47:47

Re: 三平方の定理の逆方向 / 板橋
そうだと思いますが。

三角形の三辺をそれぞれa,b,cとすると、
余弦定理より、cosA=(b^2+c^2-a^2)/2bc
ここで、仮定よりb^2+c^2=a^2であるので、
cosA=0 ∴A=90

No.12300 - 2010/11/23(Tue) 14:41:17

Re: 三平方の定理の逆方向 / √
板橋さん 有り難うございます。

すみません。
私は高校の数学を殆ど覚えていません。

できましたら、
中学レベルで教えて頂けると助かるのですが・・・

No.12302 - 2010/11/23(Tue) 15:23:23

Re: 三平方の定理の逆方向 / moto
横から失礼いたします。

中学3年用のある教科書での説明概略です。
「突っ込みどころが結構ありますが参考になれば幸いです」

三平方の定理の説明の後、以下のような流れで
「三平方の定理の逆も成り立つ」してあります。

 3辺の長さが、BC^2+CA^2=AB^2 が成り立っている△ABCと
 EF=BC,FD=CA,∠DFE=90°である直角三角形DEFとの合同を考える

 三平方の定理から、直角三角形DEFの斜辺DEを求め、AB=DEを示し
 「三辺がそれぞれ等しい」という合同条件から、△ABC≡△DEFとし、
 「合同な図形の対応する角は等しい」ということから、∠ACB=∠DEF=90°
 3辺の長さが、BC^2+CA^2=AB^2 が成り立っている△ABCは
  ∠ACBを直角とする直角三角形

No.12303 - 2010/11/23(Tue) 16:14:28

Re: 三平方の定理の逆方向 / moto
すみません。訂正です(以下の部分でEとFを間違えました)
誤 「合同な図形の対応する角は等しい」ということから、∠ACB=∠DEF=90°
生 「合同な図形の対応する角は等しい」ということから、∠ACB=∠DFE=90°

No.12304 - 2010/11/23(Tue) 16:21:27

Re: 三平方の定理の逆方向 / らすかる
「直角三角形」ならば「三平方の定理が成り立つ」は使っていいんですよね。
△ABCで、AB=c, BC=a, CA=bとし、c^2=a^2+b^2が成り立っているものとします。
CからABに垂線CHを下ろします。△CAH、△BCHは直角三角形です。
AH=x, CH=y とおくと、三平方の定理により
AH^2+CH^2=AC^2 から x^2+y^2=b^2 … (1)
BH^2+CH^2=BC^2 から (c-x)^2+y^2=a^2 … (2)
(2)-(1)から c^2-2cx=a^2-b^2
∴x=(c^2-a^2+b^2)/2c={(a^2+b^2)-a^2+b^2}/2c=b^2/c
これを(1)に代入すると
y^2=b^2-(b^2/c)^2=(b^2c^2-b^4)/c^2
={b^2(a^2+b^2)-b^4}/c^2
=a^2b^2/c^2
∴y=ab/c
よって AH:CH:AC = x:y:b = b^2/c:ab/c:b = b:a:c = AC:BC:AB から
△ABC∽△ACH なので、△ABCは直角三角形。

No.12305 - 2010/11/23(Tue) 17:21:16

Re: 三平方の定理の逆方向 / √
motoさん 有り難うございました。

motoさんのヒントで気付きました。
「ピタゴラス数」で検索してみました。

「X^2+Y^2=Z^2」を満たす自然数XYZ(ピタゴラス数)を辺の長さに持つ三角形は必ず「直角三角形」になる。と書いてありました。

この証明は、motoさんから教えて頂いた、
二つの三角形は「三辺の長さが等しい」という合同条件に当てはまるからということですね。

いくつかのピタゴラス数を当てはめて証明は出来るのですが、全てのピタゴラス数に対しての証明は私には出来ないので『三平方の定理の逆も成り立つという事実』としておこうと思います。

有り難うございました。

No.12306 - 2010/11/23(Tue) 17:33:53

Re: 三平方の定理の逆方向 / √
らすかるさん
やっと理解出来ました。有り難うございました。

前回のNO12286の問題で、
何故、直角三角形になるのか分らなかったので、
らすかるさんやヨッシーさんに理由を教えて頂く前に
自分で無理やり考えたのが「三平方の定理の逆」でした。

三辺の長さを求めたら「三平方の定理」が成り立ったので、
直角三角形だと苦肉の策でした。
正方形の一辺を1とした時
(√5)^2+(√5)^2=(√10)^2

本当に
有り難うございました。

No.12307 - 2010/11/23(Tue) 18:17:11
角度の問題です / √
教えてください。算数です。

図が書けなくて申し訳ありません。
(家のマークをクリックしてください)

11/21に放送された、
「平成教育委員会」の実力テスト(pdfファイル)の
問15の解き方を教えてください。

答えは ア+イ=45度 です。

よろしくお願い致します。


http://www.fujitv.co.jp/heisei/index.html

No.12286 - 2010/11/23(Tue) 00:06:06

Re: 角度の問題です / らすかる
頂点を
ABCD
EFGH
IJKL
として、
∠DFH=∠CEGなのでア+イ=∠CEL
△CELは直角二等辺三角形だから、∠CEL=45°

No.12287 - 2010/11/23(Tue) 00:50:18

Re: 角度の問題です / √
らすかるさん 有り難うございます。

なぜ、∠ECLが直角と言えるのですか?
よろしく お願い致します。

No.12288 - 2010/11/23(Tue) 01:08:45

Re: 角度の問題です / ヨッシー

図において、●○●○で180°なので、
∠ECLにあたる角は、●○で、90°です。

No.12289 - 2010/11/23(Tue) 06:10:15

Re: 角度の問題です / らすかる
こうすると一目瞭然
No.12292 - 2010/11/23(Tue) 09:23:56

Re: 角度の問題です / √
ヨッシーさん 
分りました。有り難うございました。

らすかるさん 有り難うございました。
これは、四辺の長さが等しく、かつ、二本の対角線の長さが等しくなるので、正方形となるから「直角」になるということでしょうか?(対角線の長さが等しければ正方形でない菱形にならないから)
よろしくお願い致します。

No.12295 - 2010/11/23(Tue) 11:14:04

Re: 角度の問題です / らすかる
そのように考えても構いませんが、
「四辺が等しく四つの角が等しいから正方形」
とか
「90°回転して一致するから正方形」
ぐらいでよいと思います。

No.12296 - 2010/11/23(Tue) 12:48:34

Re: 角度の問題です / √
らすかるさん
分りました。有り難うございました。

No.12298 - 2010/11/23(Tue) 13:06:54
数A 真偽 / マユ
次の問題を教えて下さいm(_ _)m


真偽を調べよ。


x^2+3x+2>0→x2-5x≦0

答えは、反例x=-3、6 です^^


解き方を詳しく教えて下さいm(_ _)m

No.12281 - 2010/11/22(Mon) 20:04:25

Re: 数A 真偽 / らすかる
x^2+3x+2>0
(x+1)(x+2)>0
x<-2,x>-1

x^2-5x≦0
x(x-5)≦0
0≦x≦5

x<-2,x>-1 に含まれる値で 0≦x≦5 に含まれないものがあれば
それが反例になるから、例えば x=10000 が反例となり偽

No.12282 - 2010/11/22(Mon) 20:23:56
(No Subject) / さくら
∫(0〜π/2)f(sinx)dx=∫(0〜π/2)f(cosx)dx・・・?@である。これはf(cosx)=f(sin((π/2)-x))により、
y=f(sinx)のグラフと
y=f(cosx)のグラフが
x=π/4について線対称であることからグラフを描いて面積を考えれば明らかである。(対称性により∫(0〜π/2)f(sinx)dxと∫(0〜π/2)f(cosx)dxの面積は等しい)

とあるのですが、なぜx=π/4について線対称なのかが分かりません。よろしくお願い致します。

No.12273 - 2010/11/22(Mon) 14:40:59

Re: / らすかる
sinx=cos(π/2-x) ですから
sin(π/4+t)=cos(π/2-(π/4+t))=cos(π/4-t) となり、
sinxとcosxはx=π/4について線対称となります。

No.12274 - 2010/11/22(Mon) 14:55:19

Re: / さくら
sinxとcosxはx=π/4について線対称だったら、なぜy=f(sinx)のグラフとy=f(cosx)のグラフが
x=π/4について線対称かを教えて下さい。

よろしくお願いします

No.12276 - 2010/11/22(Mon) 18:59:37

Re: / フリーザ
sin(π/4+t)=cos(π/2-(π/4+t))=cos(π/4-t) より
f(sin(π/4+t))=f(cos(π/4-t) )

No.12277 - 2010/11/22(Mon) 19:22:48

Re: / さくら
sin(π/4+t)=cos(π/4-t) だから
f(sin(π/4+t))=f(cos(π/4-t) )というのは分かります。しかし、単に同じ‘点’を指しているとしかみれないのです><
sinxとcosxの対称を言うときsin(π/4+t)=cos(π/4-t)だから、sinxとcosxはx=π/4について線対称というのは(x、y)平面でx座標が
π/4+tとπ/4-tの2点ではy座標も等しいと言うことで視覚的にも納得できますが。

No.12283 - 2010/11/22(Mon) 22:33:47

Re: / フリーザ
p(x)とq(x)が任意のa∈R
p(x-a)=q(x+a)を満たせばp(x)とq(x)はx=aで線対称ですよね?

No.12285 - 2010/11/22(Mon) 23:01:01

Re: / さくら
そういう公式があったのですね。知りませんでした。ありがとうございます。しかしp,q,x,aがf(sin(π/4+t))=f(cos(π/4-t) )とどのように対応しているのか教えてください。
その公式はp、qがイコールですが本問ではfがイコールなのでよくわかりません。

No.12290 - 2010/11/23(Tue) 08:07:53

Re: / らすかる
>sinxとcosxの対称を言うときsin(π/4+t)=cos(π/4-t)だから、sinxとcosxはx=π/4について
>線対称というのは(x、y)平面でx座標がπ/4+tとπ/4-tの2点では
>y座標も等しいと言うことで視覚的にも納得できますが。

x座標がπ/4+tとπ/4-tの2点で
sin(π/4+t)=cos(π/4-t)
だからy座標が等しくなり、sinxとcosxがx=π/4に関して線対称ということは、
もう少し一般的に考えると
g(π/4+t)=h(π/4-t)
ならばg(x)とh(x)はx=π/4に関して線対称ということですよね。
ここでg(x)=f(sin(x))、h(x)=f(cos(x)) とすれば
f(sin(π/4+t))=f(cos(π/4-t))
ですから、f(sin(x))とf(cos(x))はx=π/4に関して線対称になります。

No.12293 - 2010/11/23(Tue) 09:36:57

Re: / さくら
なぜg(x)=f(sin(x))、h(x)=f(cos(x))としてよいのですか?
かなり考えましたがわかりません。

No.12297 - 2010/11/23(Tue) 13:06:39

Re: / らすかる
sin(π/4+t)=cos(π/4-t) のとき、
「x=π/4+t のときの sinxの値」と
「x=π/4-t のときの cosxの値」が等しいから
sinxとcosxはx=π/4に関して線対称なわけですよね。

これを一般的に考えると、
g(x)やh(x)がどんな関数であっても
g(π/4+t)=h(π/4-t) が成り立つのであれば
「x=π/4+t のときの g(x)の値」と
「x=π/4-t のときの h(x)の値」が等しいから
g(x)とh(x)はx=π/4に関して線対称になります。

g(x)やh(x)はどんな関数でも良いのですから、
g(x)=f(sin(x)), h(x)=f(cos(x)) として問題ないですね。

No.12301 - 2010/11/23(Tue) 14:47:02

Re: / フリーザ
公式といってもよくわからず暗記するものではありません。
図を描いて自然と理解できるのが好ましいです。

No.12308 - 2010/11/24(Wed) 00:32:38
(No Subject) / tororo
三角形AEFと直線DBCにメネラウスの定理を適用して
DE/DF*BF/BA*CA/CE=1となぜなるのか、というか、メネラウスの定理をどういう風に覚えたらいいのかが分からなくなりました。三角形とそれに交わるタイプのメネラウスの定理は今まで何十回も使ってきたのですが・・・式が全然違うのです・・どうかよろしくお願いします。

No.12272 - 2010/11/22(Mon) 09:05:30

Re: / tororo
質問の仕方を変えます。直線が三角形と共有点を持たない場合のメネラウスの定理の適用の仕方を教えて下さい。口で説明しにくいかもしれませんがよろしくお願いします。
No.12284 - 2010/11/22(Mon) 22:53:47
数?U 220 / よだか
こんばんは
高1です。

問題
(2)sin^2θ/tan^2θ-sin^2θ=1/tan^2θ

回答
左辺=sin^2θ/(sin^2θ/cos^2θ)-sin^2θ・・?@
=1/(1/cos^2θ)-1  
=1/(1+tan^2θ)-1=1/tan^2θ=右辺

左辺の?@のsinθたちが
1に変換されているのは何故でしょうか?
sin^2θ=1-cos^2θ
に変換して計算するのではないでしょうか?

よろしくお願いします。

No.12269 - 2010/11/22(Mon) 00:04:54

Re: 数?U 220 / angel
分母・分子を共に (sinθ)^2 で割った、つまり約分したということでしょう。
分母に tanθ が出てきている時点で sinθ≠0 は前提となっていますから、(sinθ)^2 で割っても問題はありません。

No.12270 - 2010/11/22(Mon) 00:39:54

Re: 数?U 220 / angel
ちなみに、
 sin^2θ/tan^2θ-sin^2θ
というのは、
 sin^2θ/(tan^2θ-sin^2θ)
のことで良いんですよね? ( カッコがないと表現が曖昧になってしまいますので… )

No.12271 - 2010/11/22(Mon) 01:22:11

Re: 数?U 220 / よだか
あー約分!
わかりました。

そうですそうです。
まだパソコンで表記し慣れてないもので・・;;
ありがとうございました。

No.12275 - 2010/11/22(Mon) 18:35:45
縮図の利用 / 桜鬼
中3です。
 
  問題  AH=14?p、
      ∠CBP=30°、
      AB=1.5m
     であるとき、200分の1の縮図をかいて、
     高さPHを求めなさい。
    

     の問題が分かりません。
     教えてください。

No.12264 - 2010/11/21(Sun) 16:35:01

Re: 縮図の利用 / らすかる
A,H,Bの位置関係とか、Cがどこにあるかとかわからないので、求まりません。
No.12265 - 2010/11/21(Sun) 16:56:31
(No Subject) / ハッピー
こんにちは。 中3です。
 
 問題  ある自動車では、時速30?qで走っているときの
    制動距離が6mになりました。
    この自動車が、時速X?qで走っているときの制動距離
    をYmとして、X,Yの関係を式にしなさい。
    また、時速50?qのときの制動距離を求めなさい。
  
   という問題が分かりません。 
   すみませんが、教えてください。

No.12263 - 2010/11/21(Sun) 16:26:28

Re: / らすかる
この問題文だけでは式は決まりません。
例えば Y=X/5 とか Y=X-24 とか Y=√(X+6) とか
式はいくらでも作れます。

No.12266 - 2010/11/21(Sun) 16:58:36

Re: / フリーザ
わからなくて当然です。

おそらく制動距離は時速の2乗に比例するという条件がぬけていると思われます

No.12278 - 2010/11/22(Mon) 19:25:20
関数y=ax²の変域とグラフ / レッド
1辺が8?pの正方形ABCDがあります。
点PはAB上を毎秒2?pの速さで、AからBまで動き、点QもAD上
を毎秒2?pの速さで、AからDまで動きます。
2点P,Qが同時にAを出発してからX秒後の三角形APQの面積を
Y?p²として、X,Yの関係を式に表しなさい。
また、そのグラフを書きなさい。

 中3の問題で、どうしても式とグラフの書き方が
 分かりません。
 よろしくお願いします。

No.12262 - 2010/11/21(Sun) 16:15:44

Re: 関数y=ax²の変域とグラフ / X
x秒後において
AP=AQ=2x[cm]
従って
y=(1/2)AP×AQ=2x^2
となるので求めるx,yの関係式は
y=2x^2 (A)
更にxについて
0≦x≦8/2
つまり
0≦x≦4
であることに注意して(A)のグラフを描きます。

No.12267 - 2010/11/21(Sun) 17:41:27
因数分解 / 高1アメ
「a^2(b-c)+b^2(c-a)+c^2(a-b)を因数分解せよ。」
という問題で答えに「(a-b)(a-c)(b-c)」と書いたらバツ喰らいました… 検算もして合ってる確証もあるのになぜバツ何ですか? わかる方教えてください。

途中経過
a^2(b-c)+b^2(c-a)+c^2(a-b)
a^2(b-c)-ab^2+ac^2+bc(b-c)
a^2(b-c)-a(b+c)(b-c)+bc(b-c)
(b-c){a^2-a(b+c)+bc}
(a-b)(a-c)(b-c)←合っますよね?

No.12259 - 2010/11/21(Sun) 12:41:18

Re: 因数分解 / X
ええ、問題ないと思います。
No.12261 - 2010/11/21(Sun) 13:52:32

Re: 因数分解 / 高1アメ
答えはそれでいいはずですが、なぜバツを喰らったのかが知りたいのです。書く順序の問題とかですか?(ab,bc,caと書け,みたいな)
No.12280 - 2010/11/22(Mon) 19:59:44

Re: 因数分解 / X
質問文の内容を見る限り、×になる理由は見当たらないと思います。
先生に直接理由を尋ねてみてはどうでしょうか?。

No.12309 - 2010/11/24(Wed) 01:39:52

Re: 因数分解 / 高1アメ
やっぱり先生曰く、"ab,bc,caの順に書け"と言われました…。 いつもab,ac,bcと書いていたので、今までのやり方を変えるしかないですね。ありがとうございました。
No.12312 - 2010/11/24(Wed) 21:56:23

Re: 因数分解 / ヨッシー
いやいや。
それは、×の理由にはなりませんよ。

(a-b)(c-a)(b-c) のように、符号が逆になっているとか、
明らかな計算ミスでない限り
(a-b)(a-c)(b-c) も (b-c)(c-a)(b-a) 正解です。

部分点でさえ、文句を言って良いほどです。

ただし、書く順を改めれば、その先生からは○がもらえるとわかったなら、
それに従うのも、世渡り的には正解でしょう。

いずれにしても、本質的でない話です。(書く順だけの問題であれば)

ちなみに、bc,ca,ab の順で書いてある本も見たことがあります。
(aが無い, bが無い, cが無いの順です)

No.12314 - 2010/11/24(Wed) 23:28:36
4step 数B座標空間における図形 142  / よだか
こんばんは!

問題
次の球面の方程式を求めよ。
(1)点(4、2、2)を通り、3つの座標平面に接する球面

回答
球面の半径をr(r>0)とする。
この球面が点(4、2、2)を通り、
3つの座標平面に接することから
球面の中心の座標は(r、r、r)とおける。・・・?@
したがって球面の方程式は
(x-r)^2+(y-r)^2+(z-r)^2=r^2
この球面が点(4、2、2)を通ることから
(4-r)^2+(2-r)^2+(2-r)^2=r^2
展開して整理するとr^2-8r+12=0
これを解いて r=2、6
よって求める球面の方程式は
(x-2)^2+(y-2)^2+(z-2)^2=4
(x-6)^2+(y-6)^2+(z-6)^2=36


ここで質問なんですが
なぜxもyもzもrなのですか?

よろしくお願いいたします。

No.12251 - 2010/11/20(Sat) 22:23:10

Re: 4step 数B座標空間における図形 142  / X
問題の球はxy平面に接しますから、球の中心とxy平面との間の距離は
球の半径であるrに等しくなります。
ここで球の中心の座標を(x,y,z)とすると、球の中心とxy平面との距離は
|z|
ですので
|z|=r
∴z=±r
となりますが、ここで問題の球は点(4,2,2)を通りますので
z>0
よって
z=r
となります。

同様なことをyz平面、zx平面についても考えてみましょう。

No.12252 - 2010/11/20(Sat) 22:34:11

Re: 4step 数B座標空間における図形 142  / よだか
分かりやすいご説明
ありがとうございました!

No.12258 - 2010/11/21(Sun) 12:03:05
(No Subject) / アカ犬
中心A(0,a),半径1の円上の点P(cosθ、a+sinθ)についてθが180°≦θ≦360°の範囲を動くときの点Pの軌跡をCとする。Cが不等式y≧x^2のあらわす範囲にあるとき、a≧5/4であることを示せ。

解答はファイルのような感じなのですが、
なんで解答のグラフのように放物線と円が2点で接すると言えているのかが分かりません。というか、そもそも円と放物線が内部で接するとき、2点で重解を持つときは接する⇔D=0は言えるが、一点で重解をもつ(この場合y=0)とき接する≠D=0という事実を知っています。この問題の場合は、2点で重解をもつという条件ではないのだから安易に判別式=0ですまないと思うのですが・・・。疑問が尽きません。
どなたかよろしくお願いします。

No.12244 - 2010/11/19(Fri) 23:54:07

Re: / ヨッシー
円全体が、放物線より上にある(接する場合も含む)ときを
調べる問題です。
aがずっと大きければ、円もずっと上の方に行くので、放物線より
上にあるのは明らかですが、では、aをどこまで小さくできるか
を調べると、図のように、ぎりぎり接する状態を考えることになります。

No.12245 - 2010/11/20(Sat) 06:47:00

Re: / angel
こういうイメージです。
断面が放物線状のコップにピンポン玉を落とすと、底までつかず、途中でひっかかる、その様子を見ているようなものです。
で、丁度ひっかかる所で、解答にあるyの2次方程式が重解を持つことになります。

ただし、ピンポン玉が十分小さければ、底まで到達します。
この問題の例で言えば、円の半径が1ではなく、1/2以下であれば、円が原点を通る場合がa最小になります。

No.12247 - 2010/11/20(Sat) 13:17:45

Re: / アカ犬
要するに、この解答(赤本なのですが)では不十分だと言うことでいいんですよね?

赤本の解答では最初から2点で接するという前提でしか話を進めていないので。

No.12248 - 2010/11/20(Sat) 16:34:58

Re: / angel
> 要するに、この解答(赤本なのですが)では不十分だと言うことでいいんですよね?

いいえ。そんな要約しないでください…。
例えば私の挙げた「ただし、ピンポン玉が十分小さければ、…」以降の説明は、これは問題の条件が変わった時のお話ですから、この解答が適切かどうかとは直接の関係はありません。

ただ、この解答は、個人的にはやや不親切だとは思います。
※といっても、模範解答というのはそういうものですけど。
なぜかというと、
 円(半円)全体が放物線より上にある
 ⇒ 円が放物線の内側に接する時、a が最小
 ⇒ 解答にあるyの2次方程式が重解を持つ
という論理の最後が、やや飛躍気味であるためです。
なぜ飛躍気味かと言うと、問題の条件が変わって円の半径がもっと小さくなると、成立しないことだから。なので、本音としては、「なぜ重解なのか」については説明が欲しいところです。

そうはいっても、この問題では「重解を持つ」というのは正しいですし、なぜ重解なのかを細かく説明するのは結構大変なので、そこまで解答としては求められないだろうと思います。なので、模範解答として、この解答が不十分だとは思いません。

もうちょっと深く掘り下げたいのであれば、円の半径が 1 ではなく、一般の数として r ( r>0 ) にした場合を考えてみてください。

No.12249 - 2010/11/20(Sat) 17:10:03

Re: / アカ犬
なぜ重解なのかを細かく説明するのは結構大変、とありましたがよかったら説明してもらえないでしょうか?
No.12250 - 2010/11/20(Sat) 20:49:15

Re: / angel
うーん。一般の r ( r>0 ) で考えれば見えてくるのですがね。

まず、放物線の底は原点なので、円の中心の位置を考えると、a≧1 が必要。
で、放物線と円が接している場合、共有点のy座標が満たす方程式は、解答にある通り y^2-(2a-1)y+(a^2-1)=0
同時に y=x^2≧0 なので、結局この yの2次方程式が、0以上の解を1つのみ持つことが必要十分。

ここで a=1 とすると、y の2次方程式の解は y=0,1 となるため不適。そのため、a>1
よって2次方程式の係数として、-(2a-1)<0, a^2-1>0 であり、yの2次方程式が実数解を持つ場合は正となる。

ということで、yの2次方程式が2実数解を持つのは不適で、重解を持つことが分かる、となります。

No.12253 - 2010/11/20(Sat) 23:54:15
(No Subject) / simizu
バームクーヘン積分の直接の証明は高校範囲では無理と聞いたことがあるのですが、下の証明ではどこがまずいのでしょうか?詳しく教えてください。

[定理]
0≦a≦b, y=f(x) を[a, b] 上の正の値をとる可微分な関数とする。
領域{(x,y) ;a≦x≦b, 0≦y≦f(x)}
をy軸に関して回転した立体をBとしたとき、
Bの体積 =2π ∫ xf(x) dx である。ただし積分範囲はa≦x≦b 
[証明]
V(p) は領域{(x,y) ;a≦x≦p, 0≦y≦f(x)}
をy軸に関して回転した立体の体積とする。
正数h に対して、p≦x≦p+h におけるf(x) の最大値をM、
最小値をm とすると、
π(2ph+h^2)m ≦ V(p+h) - V(p) ≦ π(2ph+h^2)M
両辺をh >0 で割ると
π(2p+h)m ≦ {V(p+h) - V(p)}/h ≦ π(2p+h)M
h → 0 のとき、m, M → f(p) であるので、
π(2p+h)m, π(2p+h)M → 2πpf(p)
従って、
dV/dp = lim {V(p+h) - V(p)}/h = 2πpf(p)
ゆえに、
Bの体積 = V(b) - V(a) = ∫ (dV/dx) dx , (a≦x≦b)
= 2π ∫ xf(x) dx, (a≦x≦b) ■

No.12243 - 2010/11/19(Fri) 19:47:34

Re: / のぼりん
こんにちは。
お手伝いできるか自信ありませんが、
>  π(2ph+h^2)m ≦ V(p+h) - V(p) ≦ π(2ph+h^2)M
この式は、どこから出てきたのでしょうか?

No.12246 - 2010/11/20(Sat) 08:58:48

Re: / simizu
{π(p+h)^2-πp^2}m ≦ V(p+h) - V(p) ≦{π(p+h)^2-πp^2}M より
π(2ph+h^2)m ≦ V(p+h) - V(p) ≦ π(2ph+h^2)M
です。

No.12254 - 2010/11/21(Sun) 02:36:49

Re: / soredeha
良くできました!
No.12255 - 2010/11/21(Sun) 02:50:49

Re: / soredeha
> 良くできました!
ちなみに、m, M → f(p) であればよいので
f(x)は連続であれば十分です。

No.12256 - 2010/11/21(Sun) 04:11:45

Re: / simizu
f(x)は可微分なので連続なのは初めから分かっているのではないでしょうか?
No.12257 - 2010/11/21(Sun) 09:17:11

Re: / angel
>> f(x)は連続であれば十分です。
> f(x)は可微分なので連続なのは初めから分かっているのではないでしょうか?


定理が成立する前提として、「f(x)が可微分」とされていますが、それよりも条件の緩い「f(x)が連続」にしても同じように成立する ( つまり、こちらの方が適用範囲が広い )、ということでしょう。

No.12268 - 2010/11/21(Sun) 19:39:13

Re: / フリーザ
閉区間で連続関数f:R→Rが最大値最小値をもつことが高校だと証明できないずら
No.12279 - 2010/11/22(Mon) 19:29:23

Re: / simizu
皆さんありがとうございました。
No.12310 - 2010/11/24(Wed) 03:10:27
数的推理 / みほ
aに入る数字はいくつでしょうか。次のうちから選びなさい。

(1)0
(2)1
(3)2
(4)3
(5)4
答えは(1)なのですが導くことができません。
恥ずかしながら解答のほうお願いします。

No.12240 - 2010/11/19(Fri) 14:55:10

Re: 数的推理 / らすかる
1000÷28≒35.7から商の十の位は3以上であり、
「1a□4」の下の「□□」は2桁ですから
商の十の位は3と決まります。
すると商は最大でも39であり、28×39=1092ですから、
aは0しかあり得ません。

No.12242 - 2010/11/19(Fri) 15:12:10
母関数 / 美優
フィボナッチ数列を母関数で解くやり方なのですが、
An=An-1+An-2が成り立つとします。

G(x)=a0+a1x+a2x^2+a3x^3+…
xG(x)=a0x+a1x^2+a2x^3+a3x^4+…
G(x)+xG(x)=a0+(a1+a0)x+(a1+a2)x^2+(a2+a3)^3+…
(1+x)G(x)=a0+a2x+a3x^2+a4x^3+…
x(1+x)G(x)=a0x+a2x^2+a3x^3+a4x^4+…
x(1+x)G(x)=a1x+a2x^2+a3x^3+a4x^4+…
     =G(x)-a0
     =G(x)-1
    ・
    ・
    ・
とありますが、
質問:
G(x)にxをかけたり、足したりということをしていますが、なぜxをかけたりするのかがわかりません。他の問題でもハノイの塔などの式でAn=2An-1+1という式がありますが、母関数で解くとき、G(x)に2とxをかけ、2xG(x)=…という式にして解くやり方をしています。なぜ2xをかけると良いとわかるのでしょうか?いろいろ調べてもわかりませんでした。詳しい解説をお願いします。説明がわかりにくくてすいません。

No.12231 - 2010/11/18(Thu) 05:05:23

Re: 母関数 / X
質問内容を
母関数を求める方針の解説が分からない
と解釈して回答を。

次の例題を考えます。
例題)
S=1+2x+…+nx^(n-1) (但しx≠1) (A)
を簡単にせよ。
解)
(A)より
xS=x+2x^2+…+(n-1)x^(n-1)+nx^n (B)
(A)-(B)を計算すると
(1-x)S=1+x+x^2+…+x^(n-1)-nx^n
=(1-x^n)/(1-x)-nx^n
∴S=(1-x^n)/(1-x)^2-(nx^n)/(1-x)

ここでのポイントはSにxをかけることで右辺のべきを1つずらし
これと元のSとを足し引きすることでSの右辺の
1+2x+…+(n-1)x^(n-2)
の部分の係数を、和が簡単な式に変形できるような形に
持っていくことです。

同様に1つ目のフィボナッチ数列も2つ目の数列についても
方針は
漸化式の一部を母関数の各係数に出現させて、級数を
無限和を含まない式に変形できるように係数を変更する
ことです。
このことを頭に入れてもう一度解答を見て考えてみて下さい。

No.12233 - 2010/11/18(Thu) 11:18:36
(No Subject) / brabus
七つの数字0011123を用いて7桁の数を作るとき、
(1)7桁の整数は何通りか
(2)7桁の整数で偶数であるものは何通りか

という問題なのですが答えがわからずに困っています。
解答宜しくお願いします・・・

No.12230 - 2010/11/18(Thu) 00:31:24

Re: / X
(1)
問題の7つの数字でできる順列の数は
7!/(2!3!)=420[通り]
このうち、先頭が0になる場合は
残りの6つの数字でできる順列を考えて
6!/3!=120[通り]
よって7桁の整数は
420-120=300[通り]
できます。

(2)
問題の順列が7桁の偶数になるためには
(i)末尾が0の7桁の整数
(ii)末尾が2の7桁の整数
のいずれかにならなければなりません。
(i)の場合
0を除いた6つの数字でできる順列の数は
6!/3!=120[通り]
このうち先頭に0が来る場合は
5!/3!=20[通り]
∴末尾が0の7桁の整数は
120-20=100[通り]
(ii)の場合
2を除いた6つの数字でできる順列の数は
…[通り]
このうち先頭に0が来る場合は
…[通り]
∴末尾が2の7桁の整数は
…[通り]

(i)(ii)より求める場合の数は
…[通り]

No.12232 - 2010/11/18(Thu) 10:30:56
全22740件 [ ページ : << 1 ... 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 ... 1137 >> ]