[ 掲示板に戻る ]

過去ログ閲覧モード

社会ですけど教えて下さい。 / りかです
はじめまして、りかといいます。

今足が悪くて一人で勉強しています。小学校5年生になって
から休んでいるのでわからないので教えてださい。

写真の問題のかっこにいれたのですが、平野ばかり
入るような問題だなあって思って、いくら教科書や
資料をみてもどこにも乗っていません。

あっていますか?明日先生が病院にきたら
この問題も渡すのですぐに教えてください。
よろしくお願いします。

No.5832 - 2009/05/13(Wed) 22:19:58

Re: 社会ですけど教えて下さい。 / ヨッシー
合ってますけど、平野とは?

あと、先生って答案を回収する人ではなくて、
わからないところを教えてくれる人だと、思いましたが。

No.5833 - 2009/05/13(Wed) 22:30:24

Re: 社会ですけど教えて下さい。 / りかです
この日、取りに来てくれたのはクラスのお友達でした。
まだ正解が分からないので、分かったら、報告とお礼と
両親にも言われていますので。もう少し待ってください。
ありがとうございました。

No.5841 - 2009/05/15(Fri) 15:17:19
(No Subject) / こうた
はじめまして!高3なんですけど微分を教えて欲しいです。

f(x)=(x+2)e^1/xです。

No.5827 - 2009/05/12(Tue) 22:24:01

Re: / X
積の微分により
f'(x)={(x+2)'}e^(1/x)+(x+2){e^(1/x)}'
ここで
{e^(1/x)}'={e^(1/x)}(-1/x^2)
∴f'(x)=e^(1/x)-{(x+2)/x^2}e^(1/x)
={1-(x+2)/x^2}e^(1/x)
となります。

No.5829 - 2009/05/13(Wed) 05:36:59

Re: / こうた
> 積の微分により
> f'(x)={(x+2)'}e^(1/x)+(x+2){e^(1/x)}'
> ここで
> {e^(1/x)}'={e^(1/x)}(-1/x^2)
> ∴f'(x)=e^(1/x)-{(x+2)/x^2}e^(1/x)
> ={1-(x+2)/x^2}e^(1/x)
> となります。


x=-1、0、2になったんですけど。。

No.5830 - 2009/05/13(Wed) 07:02:29

Re: / ヨッシー
微分しなさい、ということなら、
 f'(x)={1-(x+2)/x^2}e^(1/x)
で終わりです。f'(x)=0 となるxを求めよなら、
 x=−1,2
です。x=0 はあり得ません。

グラフを書く問題と、ごっちゃになってませんか?

No.5831 - 2009/05/13(Wed) 09:04:00

Re: / こうた
> 微分しなさい、ということなら、
>  f'(x)={1-(x+2)/x^2}e^(1/x)
> で終わりです。f'(x)=0 となるxを求めよなら、
>  x=−1,2
> です。x=0 はあり得ません。
>
> グラフを書く問題と、ごっちゃになってませんか?


遅れてすみません。
そのあとにグラフかくもんだいがあります。

No.5843 - 2009/05/15(Fri) 22:16:41
(No Subject) / 受験生

 こんばんわ
 数学でわからないところがあるので
 教えてください。
 
 xの整式 A=5x^3+2ax^2+abx+3b+3
において整式Aをx+3で割ったときの余りは何か。
 
 という問題なんですが自分でそのままAをx+3で
 割ってみて答えをだし解答をみたのですが解答には

 A=f(x)とおき、
 Aをx+3で割ったときの余りは
 f(-3)=5×(-27)+2a×9+ab×(-3)+3b+3
=18a-3ab+3b-132

 なのですがどおしてこのようになるのでしょうか
 解説お願いします。
 
 

No.5821 - 2009/05/12(Tue) 00:57:34

Re: / rtz
学年が書いていないので分かりませんが、剰余の定理です。
http://www.kwansei.ac.jp/hs/z90010/sugakua/jyouyo/jyouyo.htm

No.5822 - 2009/05/12(Tue) 01:59:45
助けてください / ○
斜辺が1、高さが3分の√3の正n角錐の体積をV(n)とするとき、lim n→∞ V(n)を求めよ
No.5820 - 2009/05/11(Mon) 23:07:12

Re: 助けてください / ヨッシー
斜辺というのがどのことを言っているのかわかりませんが、
高さ√3/3、母線1の円錐に近づくと考えられるので、
底面の半径√(2/3) より
 limV(n)=(2√3)π/27
になります。

厳密には、正n角錐を底面の重心、底面の頂点、底面に無い頂点
の3点を通る平面でn等分すると、1つの三角錐について、
底面は、√(2/3) を挟む角が2π/n の二等辺三角形で、
面積は、(1/3)sin(2π/n) 高さは√3/3 なので、体積は
(√3/27)sin(2π/n)
これがn個集まったものがV(n)なので、
 V(n)=(√3/27)nsin(2π/n)
θが十分小さいと、sinθ=θ と書けるので、
 V(n)=(√3/27)n(2π/n)=(2√3)π/27
となります。

No.5823 - 2009/05/12(Tue) 08:35:15

Re: 助けてください / ○
ありがとうございました
No.5826 - 2009/05/12(Tue) 20:49:41
(No Subject) / 桜
物理の問題なんですけど・・・
1つの直線状を一定の速さVで動く点Pと、直線から距離aに定点oがある。(1)点pのo点周りの角速度を求めよ。(2)その角速度は距離OPの二乗に逆比例することを示せ。(3)o点に関する面積速度を求め、其れが一定であることを示せ。
です。
高校卒業したばかりで大学の授業では何も習ってません。どうすれば解けますか?教えてください。

No.5813 - 2009/05/10(Sun) 13:27:39

Re: / rtz
http://hooktail.maxwell.jp/bbslog/10001.html

角速度の説明くらいはされているはずだと思いますが…。
あとは高校までの数学の知識で問題ありません。

No.5817 - 2009/05/11(Mon) 04:19:52

Re: / ひとみ
上記紹介のサイト例、角度θ のとりかたに疑問。
OP=r として、rcosθ=a、rsinθ=Vt、t=0でθ=0 としたほうが(tは、負をも取りますが。)
(1)点pのo点周りの角速度を求めよ。(2)その角速度は距離OPの二乗に逆比例することを示せ。
等々の問題には適切ではないでしょうか。
事実、サイトの例では、dθ/dtが負になって、絶対値を取っています。

No.5828 - 2009/05/12(Tue) 22:47:21
モンティホール問題 / たけし
「問題」
家が3つあります。1つは男女が住んでいて、1つは男男が住んでいて、1つは女女が住んでいます。
ある人が、家をノックしたとき、「ハイ」と女の声がしました。このとき、この家に住んでいるのは男女である確率は?
「解答」
女の声がするということは、
?@男女の女
?A女女のうちの1人(仮に女A)
?B女女のうちの?Aでない方の1人(仮に女B)
なので、この家に住んでいるのは男女である確率は3分の1

「解答に対する反論」
この解答でいくと、仮に3つの家の形態が
1.男女
2.女99人
3.男99人
の場合、ある人が、家をノックしたとき、「ハイ」と女の声がしたときのその家に住んでいるのが男女である確率が100分の1になってしまいますよね。

質問1
そもそもこの問題の解答は3分の1なのか?
質問2
「解答」は正しいのか?

いかがでしょう?

No.5798 - 2009/05/08(Fri) 23:19:18

Re: モンティホール問題 / ヨッシー
男女の家をノックして、女が返事をする確率と、
女99人の家をノックして、女Aが返事をする確率は
同じでないので、最初と同様には行きません。

まず男女の家をノックする確率は1/3
そのうち男が返事をするのと女が返事をするのが1/2ずつとすると、
男女の家の女の返事を聞く確率は、1/6
女99人の家をノックする確率は、1/3
ある女が返事をする確率は、1/99で、それが99人いるので、
女99人の家の女の誰かの声を聞く確率は、1/3
よって、男女の家か、女99人かの確率の比は、1:2なので、
条件付確率は、1/3 となります。

No.5799 - 2009/05/08(Fri) 23:31:52

Re: モンティホール問題 / たけし
早速のご返信ありがとうございます。
ということは、私の書いた「解答」は正しいということですか?
私の書いた「解答に対する反論」は同様に確からしいという観点を満たしていないので、正しくないということですか?

No.5801 - 2009/05/09(Sat) 00:12:56

Re: モンティホール問題 / ヨッシー
そうですね。
「解答」は正しく、「解答に対する反論」は正しくないです。

No.5803 - 2009/05/09(Sat) 04:36:14

Re: モンティホール問題 / Кэро
素人です。

女の人の声がしたので、男の家は無視します。
それぞれの家を、同じ回数、ノツクしたとします。それぞれの家で、それぞれの人が、同じ回数、返事をしたとします。
そのためには、それぞれの家を、99×2回(最小公倍数)、ノツクしなければなりません。女の人が、99人の家で、女の人の声がする回数は198回。男と女の人の家で、女の人の声がする回数は99回。
99÷(198+99)=1/3。

それぞれの家に同じ人数がいる場合は、その人数分だけですみます。ふたりなら、二回づつノツクしたとすればいいのではないでせうか。

No.5811 - 2009/05/10(Sun) 01:01:56
はじめまして! / taka
ベクトルの問題がわからなくて困ってます。。。
問題は 
原点O、定点A(0,1) 動点P OA=a OP=pとする
pが次の条件を満たしながら動くときpはどんな図形を描くか。
|a+p|・|a−p|=0
です。。答案お願いします

No.5793 - 2009/05/08(Fri) 22:19:41

Re: はじめまして! / X
↑OA=↑a,↑OP=↑p
とし
>>|a+p|・|a−p|=0

(↑a+↑p)・(↑a-↑p)=0 (A)
と解釈して回答します。

(A)より
|↑a|^2-|↑p|^2=0
∴|↑p|=|↑a|=OA=1
よって点Pの軌跡は原点中心の半径1の円です。

No.5794 - 2009/05/08(Fri) 22:26:48

Re: はじめまして! / taka
>丁寧な回答有難うございます。。
ですがすでに(1)に(a+p)・(a−p)=0という問題があるので同じ様にかんがえて良いのでしょうか?

No.5795 - 2009/05/08(Fri) 22:37:44

Re: はじめまして! / taka
> >丁寧な回答有難うございます。。
> ですがすでに(1)に(a+p)・(a−p)=0という問題があるので同じ様にかんがえて良いのでしょうか?

a、pは→(ベクトル)です。。

No.5796 - 2009/05/08(Fri) 22:39:20

Re: はじめまして! / ヨッシー
(1)に()・()=0があって、
(2)以降に||・||=0があるんですか?

||や||は、数値(スカラー)なので、
 xy=0 ⇔ x=0 または y=0
と同じように、
 ||=0 または ||=0
が言えるだけで、
  または
より、
 =±
となります。

No.5797 - 2009/05/08(Fri) 23:17:58

Re: はじめまして! / taka
> (1)に(a+p)・(a−p)=0があって、
> (2)以降に|a+p|・|a−p|=0があるんですか?
>
> |a+p|や|a−p|は、数値(スカラー)なので、
>  xy=0 ⇔ x=0 または y=0
> と同じように、
>  |a+p|=0 または |a−p|=0
> が言えるだけで、
>  a+p=0 または a−p=0
> より、
>  p=±a
> となります。


ありがとうございます。。ベクトルでも同じなんですか?
a+p=0 または a−p=0
ならかけたら0になりませんか??
そうするとどのような図形を描きますか??

No.5800 - 2009/05/08(Fri) 23:38:00

Re: はじめまして! / ヨッシー
>ならかけたら0になりませんか??
||・||=0
だから、かけたら0で良いのでは?

図形でいうなら、点Pは、点(0,1)または点(0,-1)にあるとき
条件を満たします。

No.5804 - 2009/05/09(Sat) 04:40:26

Re: はじめまして! / taka
> >ならかけたら0になりませんか??
> |a+p|・|a−p|=0
> だから、かけたら0で良いのでは?

||・||なのでいきなりかけていいのでしょうか?

点(0,1)または点(0,-1)にあるときにはどのような図形を描きますか??点の移動ですか?

No.5806 - 2009/05/09(Sat) 09:19:37

Re: はじめまして! / 七
> ||・||なのでいきなりかけていいのでしょうか?

意味が分かりません。

> 点(0,1)または点(0,-1)にあるときにはどのような図形を描きますか??点の移動ですか?

図形はその2点だけです。
移動など関係ありません。

No.5807 - 2009/05/09(Sat) 11:37:51

Re: はじめまして! / ヤマ
> > ||・||なのでいきなりかけていいのでしょうか?
>
> 意味が分かりません。

いや意味分かるでしょ
わかんないならそこ気にしなきゃいいじゃないですか

No.5808 - 2009/05/09(Sat) 11:48:44

Re: はじめまして! / ヨッシー
おそらく
 ||・||=0
の方は、右辺が0ではないのではないかという気がします。

また、たとえば、
 =(1,0),=(1,1)
とすると、
 =1×1+0×1=1
これは内積ですね。内積は
  または (, )
のように書きます。一方、
 ||=1,||=√2
ですから、
 ||・||=1×√2=√2
これは、ただの掛け算です。掛け算は、
 ||×||,||・||,||||
のように書きます。
ベクトルの内積の「・」と掛け算の「・」は意味が違います。

No.5809 - 2009/05/09(Sat) 13:07:25

Re: はじめまして! / taka
> おそらく
>  |a+p|・|a−p|=0
> の方は、右辺が0ではないのではないかという気がします。
>
> また、たとえば、
>  a=(1,0),b=(1,1)
> とすると、
>  a・b=1×1+0×1=1
> これは内積ですね。内積は
>  a・b または (a, b)
> のように書きます。一方、
>  |a|=1,|b|=√2
> ですから、
>  |a|・|b|=1×√2=√2
> これは、ただの掛け算です。掛け算は、
>  |a|×|b|,|a|・|b|,|a||b|
> のように書きます。
> ベクトルの内積の「・」と掛け算の「・」は意味が違います。


ありがとうございます。やっぱり点でいいみたいですね。。。
(3)は成分表示して、2乗して、計算して
y=±xの直線になりました

No.5810 - 2009/05/09(Sat) 23:58:10

Re: はじめまして! / 七
(3)はマルチポスト先にしか書いてないのでは?
No.5812 - 2009/05/10(Sun) 06:18:19

Re: はじめまして! / taka
> (3)はマルチポスト先にしか書いてないのでは?

√2a・p=|p|
という問題です。。

No.5816 - 2009/05/10(Sun) 22:40:16

Re: はじめまして! / 七
OA=aですから|a|=1
a,pのなす角をθとすると
√2a・p=|p|
より
√2・1・|p|・cosθ=|p|
よって
|p|=0 または cosθ=1/√2
したがって
y=±x

ですね。

No.5818 - 2009/05/11(Mon) 09:57:24

Re: はじめまして! / taka
三角関数をつかわないで成分表示して、2乗して、計算して
y^2=x^2
y=±xになったんですけどそれでも平気ですか!?

No.5819 - 2009/05/11(Mon) 22:41:09

Re: はじめまして! / 七
> 三角関数をつかわないで成分表示して、2乗して、計算して
> y^2=x^2
> y=±xになったんですけどそれでも平気ですか!?


なぜその式変形を書かないのか不思議ですが
かまわないと思います。

No.5824 - 2009/05/12(Tue) 10:07:54

Re: はじめまして! / ヨッシー
y=±x かつ x≧0 では?
でないと、左辺が負になりますね。

三角関数を使うと、cosθ=1/√2 より、判断できますが、
成分表示で2乗した時点で、x≧0もx<0も、区別なくなるので、
注意が必要です。

No.5825 - 2009/05/12(Tue) 11:51:40
天体 / 星子
小6、理科の天体について教えてください。
たとえば、ロンドンで午前3時に南中した星座と同じ星座が、東京では何時に南中しますか。
どのように考えたらよいですか?
よろしくお願いします。

No.5779 - 2009/05/07(Thu) 01:15:58

Re: 天体 / BossF
多少の誤差を無視すれば、太陽も他の星々と同じく日周運動しています

ロンドンと日本の時差が(ロンドンを起点に見ると)+9時間 これは太陽の南中時刻のずれを表し、他の恒星も同様なのでロンドンで午前3時に南中した星座も

 午前3時+9時=午前12時 に南中します

No.5780 - 2009/05/07(Thu) 06:35:09

Re: 天体 / 七
>BossFさん
午前12時(正午)というのはロンドンが午前3時のときの
日本での時刻ではありませんか?

>星子さん
例えば太陽は日本でもイギリスでもほぼ正午ごろに南中します。
全部をこれと同じように考えるのは危険なのですが
この問題については同じに考えて差し支えありません。
ロンドンで午前3時に南中する星座は東京でも午前3時頃に南中します。

No.5782 - 2009/05/07(Thu) 08:39:29

Re: 天体 / 星子
ロンドンと東京の北緯や東経のちがいや、地球の自転や公転のことなどは、特に考えなくても良いということなのでしょうか?
No.5783 - 2009/05/07(Thu) 09:02:19

Re: 天体 / 七
> ロンドンと東京の北緯や東経のちがいや、地球の自転や公転のことなどは、特に考えなくても良いということなのでしょうか?

緯度の違いはこの問題では関係ありません。
経度の違いと地球の自転によって
日本(東京)で南中した星座および太陽などはその9時間後にイギリス(ロンドン)で南中します。
それをある意味解消するのが時差です。
東京で午前3時(イギリスでは前日の午後6時)に南中した星座は
その9時間後
東京で正午(イギリスでは午前3時)に
イギリスで南中します。

何日か経っていくと星座の南中時刻は変化していきますが
それは太陽,地球,星座の位置関係が地球の公転によって変化するからですが
この問題では日数の経過は考えなくていいでしょう。

No.5784 - 2009/05/07(Thu) 09:45:37

Re: 天体 / らすかる
問題が「何時」ですのでおそらく午前3時で正解かと思いますが、細かいことを言うと、
日本時間は東経135度基準で、東京での南中は20分程度早いので午前2時40分ぐらいですね。

No.5785 - 2009/05/07(Thu) 10:28:57

Re: 天体 / 七
パソコンの調子が悪いので2解に分けましたが
問題にあわせて言うと

ロンドンである星座が午前3時に南中したとき
東京では午前12時(正午)ですが
東京でその星座が南中するのはその9時間前なので
東京では午前3時に南中する

と言うことです。

No.5786 - 2009/05/07(Thu) 10:32:14

Re: 天体 / 星子
ありがとうございました。
では、東京の東経が140度として、今日(5月7日)の午前3時にロンドンで南中した星座が15日後に東京の日時で南中する時刻はいつ(何時何分)になりますか?

No.5787 - 2009/05/07(Thu) 10:37:14

Re: 天体 / らすかる
公転分で15度=時間で1時間早まりますので、午前1時40分頃になりますね。
No.5788 - 2009/05/07(Thu) 11:34:01

Re: 天体 / 七
今日午前2時40分に南中したとして
15日後には約1時間はやくなりますから
午前1時40分ごろです。

No.5789 - 2009/05/07(Thu) 11:35:11

恥ずかしい / BossF
大間違いでしたね 七さんありがとう
No.5790 - 2009/05/07(Thu) 12:20:24
高次方程式(高2) / ゆき
こんばんは。
分からなかったので、参考書なども見てみたのですが…;;

(1)x^3+5=0
(2)x^4+x^2+1=0
(3)(x+1)(x+2)(x+3)(x+4)-40=0

(1)は3乗の公式で因数分解しようと思ったのですが、累乗の形になってしまいますよね。

(2)x^2=Xとおいて、因数分解できないので解の公式を使ってみたのですが、x^2=-1+√3i/2,-1-√3i/2が解けず・・・。

(3)は展開して
(x^2+5x+4)(x^2+5x+6)-40=0
x^2+5x=Aとおくと A^2+10A-16=0
と因数分解できなくて・・・。

教えてください,お願いします。

No.5777 - 2009/05/06(Wed) 22:26:06

Re: 高次方程式(高2) / X
(1)
その通りですね。
x=t・5^(1/3)
と置けば見易くなります。
(2)
x^4+x^2+1=(x^4+2x^2+1)-x^2
=…(因数分解すると…)

No.5778 - 2009/05/07(Thu) 00:32:08

補足) / BossF
因数分解は問題に特に指定がない場合、有理数、実数、複素数のいずれの範囲まで使って因数分解するかを推察せねばなりません

この場合は多分実数の範囲での問題だと思いますので因数の定数項に根号がついてもかまわないのです。

(3)はA^2+10A-16=0 を解の公式を用いて解き(x-α)(x-β)と因数分解します

No.5781 - 2009/05/07(Thu) 06:49:01

Re: 高次方程式(高2) / ゆき
なんとか因数分解できました。
Xさん、 BossFさん、ありがとうございました^^

No.5792 - 2009/05/07(Thu) 23:47:42
微分積分 / むささび3年
微分積分の分野で、交点から交点までの二次関数の積分をする際に六分の一公式というのをならったのですが

∫_[α,β]{-ax^2+(m-b)x+n-c}dx=|-a|/6×(β-α)^3

において-ax^2の部分がax^2というように符号がプラスの場合は上記の公式は用いることができますか?

No.5775 - 2009/05/06(Wed) 19:13:44

Re: 微分積分 / 都
∫_[α,β]{-ax^2+(m-b)x+n-c}dx=-∫_[α,β]{ax^2-(m-b)x-n+c}dx

なので、落ち着いて考えればすぐわかることですね。

No.5776 - 2009/05/06(Wed) 21:15:28

Re: 微分積分 / むささび3年
使用できるということですか?
No.5802 - 2009/05/09(Sat) 00:48:51

Re: 微分積分 / ヨッシー
まずは、aが正か負かで、話は変わってきます。

aが正なら、上の公式は正しく、ax^2のときは使えません。
aが負なら、上の公式は誤りで、ax^2のときに正しくなります。

そもそも、この公式は

であり、上のように、絶対値は付きません。

こちらをご覧ください。

No.5805 - 2009/05/09(Sat) 04:49:00

Re: 微分積分 / むささび3年
なるほど!!

解説ありがとうございます!!

No.5814 - 2009/05/10(Sun) 20:13:32
物理?Tについてです / ハオ
地上に静止していたエレベーターが一定の加速度a(m/s^2)で上昇し始め5.0秒後に速さが6.0m/sになった。次に12秒間は一定の速さ6.0m/sで上昇しその後一定の加速度b(m/s^2)で減速し始め減速から6.0秒後にビルの屋上に到達し静止した。
問い:ビルの屋上の地点からの高さはいくらか?
この問題で僕は105mを有効数字2桁にする為に1.1×10^2mとしたのですが答えは105mでした。何故でしょうか?測定値の場合は有効数字の桁を合わせるのではないのですか?

No.5767 - 2009/05/05(Tue) 21:51:36

Re: 物理?Tについてです / BossF
一般的にいえば「答え」が間違ってて、あなたがあってます。

しかし、高校範囲では問題文に有効数字が指定されてない場合「慣例的に」測定値の有効数字の桁に合わせることになっていますが、「例外」として、「答え」が整数値の場合にはそれを解答として採用することになってます。

まあ、大目に見てあげてください(^^;;

No.5769 - 2009/05/05(Tue) 23:19:03

Re: 物理?Tについてです / ハオ
早速の回答どうもありがとうございます。
どうも納得いかなかったのがBossFさんの明快な回答で納得できました。

No.5771 - 2009/05/05(Tue) 23:50:01
(No Subject) / 学生時の勉強を忘れた大人
どの学年だかわかりません/ 製図の勉強をしている大人です。


次の空欄を答えよ。
?@ 点(120,70)を中心とし、点(90,30)を通過点として描いた円の半径は(   )である。
?A この円を点(70,0)と点(30,40)を軸として対称移動した場合の円の中心座標は(  )となる。

?@は a^2 + b^2 = c^2
(120−90)^2 +(70−30)^2 =C^2
30^2 + 40^2 = C^2
C^2 = 900 + 1600 = 2500
     C = 50   となりましたが、
    ?Aがわかりません。
座標で作図して答えは(0,50)だと思うのですが。
     式ではどのように求めればよいでしょうか?
よろしくお願いします。
       

No.5762 - 2009/05/05(Tue) 19:30:05

Re: / にょろ
円であるので
点(70,0)と点(30,40)を結ぶ直線を求め
中心をこの直線で対称移動すれば終わりです。

対称点は距離が点と同じで点から直線に引いた垂線の足が同じになります。

No.5765 - 2009/05/05(Tue) 19:46:25

Re: / 学生時の勉強を忘れた大人
ありがとうございます。
?Aの点(70,0)と点(30,40)を結ぶ直線は
 y=ax+bから a =-1 y= -x+70 だと思うのですが
「中心をこの直線で対称移動する」のはどのような式で
考えればいいのでしょうか?
 よくわからないので、教えてください。
お願いします。 


No.5768 - 2009/05/05(Tue) 23:08:17

Re: / X
求める円の中心の座標を(X,Y)とすると
まず円の中心を結ぶ線分の中点
((X+120)/2,(Y+70)/2)
が対称軸となる直線
y=-x+70 (A)
の上にありますので
(Y+70)/2=-(X+120)/2+70 (B)
次に円の中心を結ぶ線分が(A)と垂直になることから
この線分の傾きは1ですので
(Y-70)/(X-120)=1 (C)
(B)(C)を連立して解きX,Yを求めます。

No.5770 - 2009/05/05(Tue) 23:31:02

Re: / 学生時の勉強を忘れた大人
教えていただき有難うございました。
とても助かりました。

No.5772 - 2009/05/06(Wed) 00:38:16
数学3第5章積分法とその応用 回転体の体積 / ポン太 高校3年生
(1)
半径100の球に十分大きい平面αが接している。この平面αをこれと平行を保ちつつ球の中心に向けて100-50√30移動してできた平面をα´とする。
球と平面α´で囲まれる領域のうち、小さい方の体積を求めなさい。

(2)
座標空間において、原点を中心とする半径100の球と、三点A(0,0,100√2)、B(100,100,0)、C(-100,100,0)を頂点とする三角形ABCがある。
球と三角形ABCとで囲まれる領域のうち、原点を含まない方の体積を求めなさい。

落ちこぼれクラスの補習授業の問題なのにちんぷんかんぷんですTOT
どっちも平面から球の一部分がひょっこりハミ出てるような感じだと思うのですが、計算の仕方がさっぱりです。どうか教えてください。お願いします。

No.5760 - 2009/05/05(Tue) 19:00:20

Re: 数学3第5章積分法とその応用 回転体の体積 / にょろ
中心を原点(0,0,0)とした球の一部分の体積は以下のとおりで求められます。

∫_[a,b](x座標がxのときに切る円の半径)^2πdx
です。
(x座標がxのときに切る円の半径)を求めるわけですが
三平方の定理を使って
(x座標がxのときに切る円の半径)=√(100^2-x^2)となります。
なので求める式は

∫_[a,b]√(100^2-x^2)πdx
ここでaは50√30,bは100なので最終的な式は

∫_[50√30,100]√(100^2-x^2)πdxとなります。
(x座標がxのときに切る円の半径)は画像の緑の部分の半分です。
球の切り口って円になりますよね?
そこの半径です。

No.5761 - 2009/05/05(Tue) 19:28:51

Re: 数学3第5章積分法とその応用 回転体の体積 / にょろ
次はちょっと分かりづらいのですが
球が三角形で切られているのではなく
球が平面で切られていると考えて見ませんか?

で、その切り取られた図形がどんな立体化は考えたくもありませんが、求められているのが体積ならば簡単です。

画像は円を横から見た図です。
それを球と見たときの上の方を求めます。

この直線の方程式はすぐ求まりますからそこから
面積を求めて積分してやればいいことになります。
言葉では説明しづらいので次でどのような積分になるのか切り口を見ながら説明します。

No.5764 - 2009/05/05(Tue) 19:43:55

Re: 数学3第5章積分法とその応用 回転体の体積 / にょろ
上で直線が逆になってしまっているのはご愛嬌ということで…

この平面で切られた球の断面はこうなります。
この青い部分です。この部分のx=kのときの面積の求め方は、

(1)x=kのとき円の方程式は
x^2+y^2=(100^2-k^2)
ということが分かっています。
(本当は文字が違いますが面積もとめる限りでは問題にならないのでこのまま)
(円の半径を求めた時点でもとまっています)
そして切り口のy座標は
y=-(√2)x+100√2のx=kなので
y=-(√2)k+100√2になります。
(この直線の方程式はすぐ求まりますの直線の方程式です。)
これをx^2+y^2=(100^2-k^2)に代入してxを求めれば積分すべき値が出ます。(kの方程式です。)
それをk=100からk=a(aは上のグラフで(100,0)でないほうの交点のx座標)まで積分すればOKです。

もっといい方法があるかもしれませんが僕は思いつきません。
平面を回転させて積分を簡単にする方法もあるにはありますが…

No.5766 - 2009/05/05(Tue) 20:22:43

Re: 数学3第5章積分法とその応用 回転体の体積 / ポン太 高校3年生
にょろさんへ。
詳しい説明をありがとうございました。納得できたと思います。

もう一つお聞きしたいのですが、学校では求める図形は回転体だのどうのといってました(ノートとってないんで細かいことはさっぱりです)。
でもどこがどう回転体なのか分からないです。回転体でとくにはどうやればいいんでしょうか。

No.5773 - 2009/05/06(Wed) 10:49:32

Re: 数学3第5章積分法とその応用 回転体の体積 / にょろ
回転体というのは
ある軸に対してある図形を回転させたものです。

例えば正方形の紙を一辺を中心として回転させてください。
するとその通った部分は円柱になるでしょう?
それが回転体です。

回転体には公式があって
軸に図形がかからない限り

V=π∫_[a,b](f(x))^2dx
です。

公式っていっても単に円の面積積分しただけなんですけどね^^;

こんな感じの図形です。
http://www.geisya.or.jp/~mwm48961/math3/rot2.htm

No.5791 - 2009/05/07(Thu) 18:53:50

Re: 数学3第5章積分法とその応用 回転体の体積 / ポン太 高校3年生
にょろさまへ。

遅くなってしまってすみませんでした。
や〜っと解決しました。ありがとうございました。

球を中心を通る平面できったときにできる円のうち、平面からはみ出る部分のみを回転させればいいという情景がぼんやりと想像できて来ました。

No.5838 - 2009/05/14(Thu) 05:15:33
教えてください。 / 算数苦手
小学校 5年生の宿題です。どうしてもわかりません。教えてください。
(19+□)÷(35−□)=1と1/4 

□には同じ数字が入ります。
答えは、11になるそうです。
1と1/4 は 1.25ということです。
お願いします。

No.5756 - 2009/05/05(Tue) 14:17:16

Re: 教えてください。 / BossF
割り算が分数にできること、つまり「A÷B=A/B」は知ってますよね

だから (19+□)÷(35−□)=(19+□)/(35−□)
=1と1/4=5/4

つまり(19+□)/(35−□)=5/4

だから、4x(19+□)=5x(35−□)これから、考えます

No.5757 - 2009/05/05(Tue) 14:47:17

Re: 教えてください。 / 算数苦手
BossFさん。ありがとうございます。
4×(19+□)=5×(35−□)までは、わかりました。このあとがわかりません。教えてください。すみません。

No.5758 - 2009/05/05(Tue) 17:16:27

Re: 教えてください。 / Bob
76+4×□=175−5×□
ここからは線分図とかで表してみるとわかりますが

4×□+5×□=175−76
9×□=99
  □=11

No.5763 - 2009/05/05(Tue) 19:41:24
(No Subject) / 大いち
f(z)=1/z+i(iは複素数)とする。
zが実数であるとき、f(z)は複素平面上で(−i)/2を中心として半径1/2の円周上にあることを示せ。

No.5745 - 2009/05/03(Sun) 03:58:56

Re: / らすかる
1/(z+i) - (-i)/2 = z/(z^2+1) + i(z^2-1)/{2(z^2+1)}
{z/(z^2+1)}^2+{(z^2-1)/{2(z^2+1)}}^2 = (1/2)^2
∴f(z)は(-i)/2を中心として半径1/2の円周上にある。

No.5749 - 2009/05/03(Sun) 13:21:41

Re: / 大いち
らすかるさん、「^」←この記号って、どういう意味ですか?

馬鹿ですいません。。。

No.5751 - 2009/05/03(Sun) 17:55:29

Re: / らすかる
「累乗」です。
2^3 は 「2の3乗」

No.5752 - 2009/05/03(Sun) 19:05:46

Re: / 大いち
どんな式かは分かったんですけど、その式の意味がいまいち分かりません。
よかったら、詳しく教えてください。お願いします。

No.5753 - 2009/05/03(Sun) 20:24:23

Re: / らすかる
一つ目は、f(z)と(-i)/2の差を計算しています。
二つ目は、上の結果からf(z)と(-i)/2の距離の2乗を計算しています。
差がa+biのとき、距離の2乗はa^2+b^2ですね。

No.5754 - 2009/05/04(Mon) 05:19:33

Re: / 大いち
助かりました。ありがとうございました。
No.5759 - 2009/05/05(Tue) 18:48:42
三角関数 / 高3
0≦θ<2πとし、t=sinθ+cosθとする。

θ=(5/12)πのときのtの値を求めよ。

また、tのとる値の範囲を求めよ。

よろしくお願いします。

No.5744 - 2009/05/03(Sun) 02:06:09

Re: 三角関数 / X
前半)
条件から
t^2=(sinθ+cosθ)^2
=1+2sinθcosθ
=1+sin2θ
∴θ=(5/12)πのとき
t^2=1+sin(5/6)π=3/2 (A)
ここで
0<(5/12)π<π/2
ですのでθ=(5/12)πのとき、少なくともt>0
よって(A)より
t=√(3/2)

後半)
tの右辺を合成してみましょう。

No.5746 - 2009/05/03(Sun) 11:27:21

Re: 三角関数 / 高3
丁寧なご指導ありがとうございました。
No.5748 - 2009/05/03(Sun) 12:23:41
数列 / むささび3年
第3項が2、第5項が1/2の等比数列の初項と公比を求めよ。

おねがいします。

No.5736 - 2009/05/02(Sat) 18:45:29

Re: 数列 / DANDY U
No.5623 ,No5685 などの質問の回答に対するなんの反応,返事もなしに、次々と質問をするのは望ましいことではありません。
(回答者は解答作成マシーンの部品ではありません)

No.5737 - 2009/05/02(Sat) 19:12:06

Re: 数列 / むささび3年
> No.5623 ,No5685 などの質問の回答に対するなんの反応,返事もなしに、次々と質問をするのは望ましいことではありません。
> (回答者は解答作成マシーンの部品ではありません)


すいませんでした。以後気を付けます。

No.5740 - 2009/05/02(Sat) 22:07:35

Re: 数列 / DANDY U
第n項をA[n], 公比をrとすると A[3]*r^2=A[5]
よって 2*r^2=1/2
∴r=±1/2 が公比
したがって A[1]*(±1/2)^2=A[3]=2
となり A[1]=8 が初項となります。

No.5742 - 2009/05/02(Sat) 23:15:44

Re: 数列 / むささび3年
ありがとうございます。
No.5750 - 2009/05/03(Sun) 13:23:21
教えてください。 / よしこ(中3)
准看護学校の過去問題で次の問題の解き方がわからなくて困っています。わかりやすく教えてください。
よろしくお願いします。

(問)x^2 + y^2=4のときy-xの最大値を求めなさい。

No.5730 - 2009/05/02(Sat) 11:57:50

Re: 教えてください。 / ハオ
こんにちわ。僕はこのサイトに常駐して解けそうな問題は解かして頂き又質問もさせて頂いている高2の者です。
ですので、僕の解答は無視されて頂いても一向に構いません。
y-x=tと置く。(ここでy-x=tと置いたのはそれしか進むべき道がないからです。y-xを二乗しても結局はx,yの項が出てしまいます。) y-x=tよりy=x+t この式よりtはy=xの切片である事が分かります。
ところでx^2+y^2=4は半径2である円の式です。
グラフを用いて解くとy=x+tの式は当然先程の円を通るはずです。何故ならx,yはx^2+y^2=4を満たすから。
y=x+tはy=xを上下にtだけ平行移動したグラフです。これらの事を頭に入れてy=xを上下に動かすとtが最大になるのは
y=x+tが円に第二象限で接する時だと分かります。
接するというのは、O(0,0)とy=x+tの距離が2であるとあるという事,点と直線の公式より
t=±2√2 
よってt=y-x=2√2.

No.5733 - 2009/05/02(Sat) 16:37:20

Re: 教えてください。 / よしこ(中3)
ハオさんありがとうございました。
点と直線の公式というのが中学ではわからないで、ネットで調べて、言うとおりに解いたらできました!
わかりやすくて助かりました。
ちなみに、この問題って、中学までの数学の知識で解けるのでしょうか?
もしわかったら教えてください。

No.5734 - 2009/05/02(Sat) 17:21:18

Re: 教えてください。 / ハオ
すいません、優しさに欠く解答でした。
点と直線の公式を習っていないのでしたら、
円と直線の接点を点A、円の中心を点O、切片を点Bと置くと
ΔOABはAを頂角とする直角二等辺三角形です。
辺の比1:1:√2は知っていますか?
それを知っていればOA:OB=2:2√2が導けます。

No.5735 - 2009/05/02(Sat) 17:56:36

Re: 教えてください。 / DANDY U
> ハオさん
中学までの知識だと x^2 + y^2=4 のグラフは円になるということは知らないことになっていると思います。(導けないことないのですが)

> よしこ(中3)さん
マルチ先の掲示板にも回答が付いていましたよ。そこに・・
(マルチの場合は、「・・とマルチ」と断りをいれ、解決すれば他サイトにその旨を書きこむようにしてください)

No.5739 - 2009/05/02(Sat) 21:48:15

Re: 教えてください。 / よしこ(中3)
ハオさん、ありがとうございました。
やっと納得しました。
DANDY U さんもご指摘ありがとうございました。
初めての投稿で、礼儀知らずなことをしてしまいました。
本当に申し訳ありませんでした。

No.5847 - 2009/05/16(Sat) 00:16:05
質問なんですが / でるた
y=1/(e^1/x-1)のグラフをマクローリン展開をもちいてかけというのはどうすればいいんですか?
No.5729 - 2009/05/02(Sat) 10:56:05
高2数学について / ハオ
授業でベクトルの内積というのものを習ったのですが
内積とは一体何なのでしょうか?
座標軸上のどの部分を表しているのでしょうか?
勉強していても内積の存在意義が見出せません。内積=0の時に二つのベクトルは垂直である、という事位にしか使えないと思うのですが。

No.5726 - 2009/05/01(Fri) 21:06:46

Re: 高2数学について / X
例えば
↑a=(2,3)
を考えます。
↑e1=(1,0)
↑e2=(0,1)
(つまり↑e1,↑e2はx軸y軸の正の向きの単位ベクトル)
と↑aとの内積を考えると
↑a・↑e1=2
↑a・↑e2=3
これはそれぞれ↑aのx,y成分を表しています。
同様にある単位ベクトル↑eに対し
↑a・↑e
は↑aの↑eの向きに対する正射影の大きさを表しています。

No.5728 - 2009/05/02(Sat) 08:23:30

Re: 高2数学について / ハオ
Χさん
有難う御座いました。納得です。
数学の本質を理解したいなぁ、って最近思うようになって
黒大数を読んでいるのですが大学受験に太刀打ち出来るでしょうか?

No.5732 - 2009/05/02(Sat) 16:20:38

Re: 高2数学について / X
ハオさんに言われるまで黒大数という参考書の存在は知りませんでした。
内容も全く見ていませんので、その参考書に対するコメントは差し控えさせていただきます。
(ごめんなさい)

No.5741 - 2009/05/02(Sat) 22:58:12
全21195件 [ ページ : << 1 ... 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 ... 1060 >> ]