[ 掲示板に戻る ]

過去ログ閲覧モード

(No Subject) / ゆう【高1】
0.10mol/L塩酸10mLと0.10mol/L水酸化バリウム水溶液20mL(いずれも電離度1)の 混合水溶液のPHを求めよ。


よろしくお願いします。

No.4085 - 2008/11/26(Wed) 23:24:14

Re: (No Subject) / ゆう
化学だから教えていただけなかったのでしょうか?
そうだとしたら本当にすいませんでした。

No.4094 - 2008/11/28(Fri) 12:20:57

Re: / ヨッシー
化学だからではなく、忘れちゃったからです。
掲示板では、解けない問題を「解けません」と
言って回りませんので、いきおい、放っておかれます。

というわけで、わかる方よろしく。

No.4095 - 2008/11/28(Fri) 14:37:30

Re: / にょろ
水酸化バリウム
Ba(OH)2

塩酸
HCl

式は
Ba(OH)2+2HCl→BaCl2+2H2O

でどうでしょ?
ここからは計算です。

No.4096 - 2008/11/28(Fri) 16:20:58

Re: (No Subject) / ゆう
ヨッシーさんへ
そうだったんですか!分かってなくてすいません。ありがとうございます!



分かりました!!
ありがとうございました!

No.4099 - 2008/11/28(Fri) 17:30:46

Re: / BossF
α=1だから
0.10mol/ℓHCl10mℓ中に H+=0.1x0.01=1x10^(-3)[mol]
0.10mol/ℓBa(OH)2水溶液20mℓ中に 
OH-=0.1x2x0.02=4x10^(-3)[mol]

これを混合すれば
 [OH-]=3x10^(-3)/(0.01+0.02)=1x10^(-1)[mol/ℓ]

すると水のイオン積から   [H+]=10^(-13)

よって pH=-log[H+]=13

No.4105 - 2008/11/29(Sat) 01:40:47

Re: (No Subject) / ゆう
なるほど…
よく分かりました!!
詳しい解説ありがとうございました!

No.4108 - 2008/11/29(Sat) 08:52:21
積分で体積 / 高3
【問】2曲線  y=x2  ,  y=√{8x}
に囲まれる部分をx軸周りに回転してできる回転体の体積を求めよ。

自分で計算したところ、48/5πとなったのですが、確信がもてません。
よろしくお願いします。

No.4082 - 2008/11/26(Wed) 21:32:38

Re: 積分で体積 / rtz
あっていると思います。
No.4083 - 2008/11/26(Wed) 21:53:32
解けそうで解けないんです / 旅人
上り下りともに□分おきに発車している列車があり、また線路沿いの道を歩く人がいます。この人は上りの列車と12分ごとにすれ違い、下りの列車に15分ごとに追い越されます。ただし、列車の速さはすべて等しく、また、列車の速さと人の歩く速さはそれぞれ一定です。

キョリに注目すればいいのか
速さに注目すればいいのか・・・

困ってます。
よろしくお願いします。

No.4074 - 2008/11/26(Wed) 15:11:37

Re: 解けそうで解けないんです / チョッパ
列車と列車の間の距離を1とします。

列車と人の速さの和=1÷12=1/12
列車と人の速さの差=1÷15=1/15

和差算を用いて、
列車の速さ=(1/12+1/15)÷2=3/40

よって、1÷3/40=40/3分

No.4075 - 2008/11/26(Wed) 15:17:29

Re: 解けそうで解けないんです / チョッパ
次の図は、前の列車とすれ違ったあと次の列車とすれ違うまでの図と、前の列車に追い越されたあと次の列車に追い越されるまでの図を上下にかいたものです。

(12分)列車→→→→→→→→→→→→
(12分)列車→→→→→→→→→→→→←人(12分)

(15分)列車→→→→→→→→→→→→→→→
(12分)列車→→→→→→→→→→→→←人→(15分)

上の図より、列車が15−12=3分で進む距離を人は12+15=27分で進みます。

よって、人が12分で進む距離を列車は12÷27×3=4/3分で進みます。
したがって、12+4/3=40/3分となります。

No.4076 - 2008/11/26(Wed) 15:36:40

Re: 解けそうで解けないんです / ヨッシー
こちらの後半と同じですね。
↓図を描いている間に思い出しました。

No.4077 - 2008/11/26(Wed) 18:04:54
確率 / ★
赤玉5個、黒玉3個、白玉4個が入っている袋の中から玉を1個取り出し、色を確認してから袋の中へ戻すという試行を考える。この試行を3回行ったとき2回だけ同じ色となる確率を求めよ。


この問題なのですが、解答は↓

赤玉が2回出るとき
3C2×(5/12)^2×7/12=175/576

黒玉が2回出るとき…

白玉が2回出るとき…

というように書かれていたのですが、


私の解答は↓

赤玉が2回出るとき
5/12×5/12×7/12=175/1728

黒玉が2回出るとき…

白玉が2回出るとき…


というようにして間違ってしまいました(汗)


それで、この問題はなぜ上の解答のように計算しなければならないのか教えて頂けますでしょうか?(>_<;)

宜しくお願いします。


No.4064 - 2008/11/26(Wed) 03:37:23

Re: 確率 / rtz
それだと「1回目赤、2回目赤、3回目赤以外」です。
赤以外が1回目や2回目に出る場合も考えなくてはいけません。

No.4065 - 2008/11/26(Wed) 03:45:41
評価(不等式) / Jez-z
n>3を満たす整数、-8a[n]=a+(n-1)dの取り得る値の範囲を求めよ。
(08 早稲田政経数学問4の一部より)

(答)-8n+36<a[n]≦-6n+30

(方針)
a=12-2dとわかるので、
-8<d≦-6より
24≦12-2d<28・・・・?@

一方
n>3より
-8<d≦-6から
-8(n-1)<(n-1)d≦-6(n-1)
⇔-8n+8<(n-1)d≦-6n+6・・・・・?A

?@、?Aより

-8n+32<a+(n-1)d<-6n+34

上の計算のどこに誤りがあるのでしょうか?ご指摘願います。


a=12-2d

No.4062 - 2008/11/26(Wed) 00:14:38

Re: 評価(不等式) / rtz
問題文の省略しすぎですし、必要項目が抜け落ちています。
こと問題文に関しては、投稿前に今一度の確認をお願いします。

「数列{an}において、an=a+(n−1)dであり、
a3=12、S8>0、S9≦0である。
これより6≦d<8。
an(n>3)の取りうる範囲を求めよ。」
程度は書いていただかないと、そもそも分野も分かりません。
(初めはガウス記号かなにかかと思いました。)


さて質問の点については、
Jez-zさんのされた方法ですと、たとえば1≦x<2であるとして、
2x−x(=x)の範囲を、「2≦2x<4及び−2<−x≦−1から0<x<3」
としているのと同じです。

この場合、aも(n−1)dもdの関数ですから、両者の最大最小の和では、
必要条件ではありますが、十分条件にはなりません。

ですから、a=12−2dよりan=12+(n−3)d
として考えなければいけない、ということです。

No.4063 - 2008/11/26(Wed) 01:03:45

Re: 評価(不等式) / Jez-z
rtzさん、まず問題文の情報を正確に明示できなかったことにお詫び申し上げます。

それから、解説ありがとうございます。。
aもdの関数であることを考慮できていませんでした^^;

No.4084 - 2008/11/26(Wed) 22:13:57
進数計算 / こじま
連続ですみません。
1、16進数で352を10進数と2進数に変換しなさい。

2、2進数で0111 1100を10進数と16進数に変換しなさい。


進数計算がとても苦手で…。
なんとか理解したぃのでお願いします。

No.4061 - 2008/11/26(Wed) 00:11:00

Re: 進数計算 / ヨッシー
352(16)=3×162+5×16+2=850(10)

16進数を2進数に直すと、
1→0001
2→0010
3→0011
4→0100
・・・
E→1110
F→1111
のように、16進数の1桁と、2進数の4桁が対応し、
 352(16)=0011 0101 0010

同様に、
0111 1100(2)=7C(16)=124(10)
です。

No.4067 - 2008/11/26(Wed) 06:01:54

Re: 進数計算 / こじま
解説ぁりがとぅございます。162はどこからでてきたのですか?そこがわかりません。
No.4068 - 2008/11/26(Wed) 07:58:21

Re: 進数計算 / ヨッシー
携帯だと表示されないのでしょうかね。

 352(16)=3×16^2+5×16+2=850(10)
です。( )内の数字は、何進数かを表しています。

No.4069 - 2008/11/26(Wed) 10:17:03
進数計算 / こじま
明日テストなので至急解答解説お願いします。

10進数で‐5+2を1byteの2進数で行いなさい。
‐5…1111 1011
+2…0000 0101

答え方がゎかりません。お願いします。

No.4060 - 2008/11/25(Tue) 23:54:30

Re: 進数計算 / ヨッシー
1byte というのは8桁の2進数ということです。
−5 は、こちらによると 11111011
+2は 00000010 であり、足すと 11111101 になります。

ちなみに、これを十進数に直すと、やはり2の補数を取って、
 11111101 → 00000010 +1 →00000011 = 3
なので、−3を表しています。

No.4066 - 2008/11/26(Wed) 05:55:47
積分 / 高3
【問】底面の周がx2+y2=9で表される立体を、x軸に垂直な平面で切ったときの断面は正3角形であるという。この立体の体積Vを求めよ。

よろしくお願いします。

No.4057 - 2008/11/25(Tue) 23:18:37

Re: 積分 / ヨッシー
x座標xにおいて、底面のy方向の長さは、
 2√(9−x2)
よって、その位置での断面の面積は、
 (√3)(9−x2)
これを、x=-3〜3 で積分して
 V=√3{3-(-3)}3/6=36√3

No.4058 - 2008/11/25(Tue) 23:28:23
(No Subject) / ちえみ 
こんばんわ。お世話になります。
定積分の問題です。表記が解りづらいと思いますが;、宜しくお願いします。
1.∫0からa √(a^2-x^2)dxを計算し,半径a(>0)の円の面積がπa^2であることを示せ。

次の定積分を計算せよ。
2.∫0から1 (1+x)√(1-x^2)dx (x=sintと置き換える)
3.∫π/3からπ/2 1/sinx dx (t=cosxと置き換える)

No.4056 - 2008/11/25(Tue) 21:42:44

Re: / ヨッシー
1.
 x=asint とおくと、dx=acostdt
 0≦x≦a は、0≦t≦π/2 に相当
 この範囲で、√(a2−x2)=acost
よって、
 (与式)=∫0π/22cos2tdt
  =∫0π/22(cos2t+1)/2dt
  =(a2/2)[sin2t/2+t]0π/2
  =πa2/4
これが、4分円の面積なので、円全体では、πa2 になります。

No.4059 - 2008/11/25(Tue) 23:38:01
(No Subject) / RUI
微分の問題なのですが

f(x)=2x^3+3kx^2‐6x‐2kはx=αで極大値をとり x=βで極小値をとるとする。ただしkは定数である。

1.αβの値を求めよ。また α+βをkを用いて表せ。

2.f(x)を1/6*f'(x)で割った余りを求めよ。

3.f(α)*f(β)をkを用いて表せ。

というものなんですが
解答と解法をお願いします。

No.4049 - 2008/11/24(Mon) 22:57:37

Re: / ヨッシー
1.
f'(x)=6x2+6kx−6=0 の2つの解がα、βなので、
解と係数の関係より・・・
2.
(1/6)f'(x)=x2+kx−1 なので、実際に割って求めます。
3.
2.の結果より
 f(x)=g(x)(x2+kx−1)−(4+k2)x−k
であり、
 x2+kx−1=0
の解がα、β なので、
 f(α)=−(4+k2)α−k
 f(β)=−(4+k2)β−k
あとは、f(α)*f(β)を計算して、1.の結果を適用すれば、良いでしょう。

No.4051 - 2008/11/24(Mon) 23:44:17
(No Subject) / ゆう
0.5?sのおもりをばねにつるしたところ、ばねは7?p伸びた。このばねのばね定数を求めよ。


きっと簡単なんだと思うのですが分からなくて…お願いします。

No.4046 - 2008/11/24(Mon) 20:18:20

Re: / 七
教科書のばね定数の説明はどう書いてますか?
力と長さの単位をそれにあわせて計算しましょう。

No.4047 - 2008/11/24(Mon) 21:00:36

Re: (No Subject) / ゆう
すいません。
あてはめてみたらできました!
ありがとうございました!またよろしくお願いします!

No.4053 - 2008/11/25(Tue) 00:07:00
(No Subject) / motiji
(0,∞)∫sinx/(x^a)dx(0<a<2)の収束、発散を調べよ という問題の考え方がわかりません。
答えには被積分関数の形から積分をx=0の近傍と、残りの非有界区間での積分に分けて考えると書いてあります。
なぜ(0,∞)∫sinx/xdxと同じように、いきなり非有界区間での広義積分の収束性を調べてはいけないのですか?
どなたか教えてください。よろしくお願いします。

No.4042 - 2008/11/24(Mon) 16:38:46

こんばんは / のぼりん
はじめまして。
既にお気づきとは思いますが、マルチポスト先に回答しましたので、ご笑覧下さい。

No.4048 - 2008/11/24(Mon) 22:35:15

Re: / motiji
ありがとうございます。
No.4050 - 2008/11/24(Mon) 23:35:03
期待値 / (・∀・)
次の問題が分からないので教えて頂けますか(>_<)

ある試行において確率の関係は次のようになっている。期待値が3になった。そのときのa,bの値を求めよ。

X=1  p=a
X=2  p=a
X=3  p=b
X=4  p=b
X=5  p=b

計 1


宜しくお願いします。

No.4040 - 2008/11/24(Mon) 15:26:35

Re: 期待値 / 七
2a+3b=1
3a+12b=3
ですね。

No.4041 - 2008/11/24(Mon) 16:08:15

Re: 期待値 / (・∀・)
お返事有難うございます。
お陰で解くことはできたのですが、

2a+3b=1

の=1は計の1ということですよね?

すると
3a+12b=3

の=3というのはどこから出てきたものなのでしょうか?(>_<;)

No.4043 - 2008/11/24(Mon) 17:03:43

Re: 期待値 / (・∀・)
すみません、3は期待値からきたものなのですね。今気付きました(汗)

自分で書いておいて恥ずかしいです(笑)

有難うございました(^-^)

No.4044 - 2008/11/24(Mon) 17:07:53
(No Subject) / *Sana*
△ABCにおいて,辺BCの中点をD,辺ACの中点をEとし,線分ADと線分BEの交点をFとする。△ABCの面積をSとするとき,△ABD,△ABFの面積をそれぞれSで表せ。

分からないので教えて下さい。
宜しくお願いします。

No.4033 - 2008/11/23(Sun) 18:38:12

Re: / にょろ
△ABD=S/2(高さが等しい三角形)
メネラウスの定理より
AF*1*1/FD*2*1=1

AF=2FD

ここまで来れば何とかなりますか?

No.4038 - 2008/11/24(Mon) 07:35:43
(No Subject) / ゆう
すいません。化学なのですが…


NaHCO3、NaH2SO4(数字は全て小さい方です。)は正塩、酸性塩、塩基性のどれかという問題なのですが、教科書を読んでもよく分からなくて…お願いします。

No.4026 - 2008/11/23(Sun) 16:11:31

Re: / 七
NaHCO3
強塩基の NaOH と 弱酸のH2CO3 との塩で
酸のHが残っているから
酸性塩,液性は 塩基性 です。
NaHSO4
強塩基の NaOH と 強酸のH2SO4 との塩で
酸のHが残っているから
酸性塩,液性は 酸性 です。

No.4027 - 2008/11/23(Sun) 16:56:55

Re: (No Subject) / ゆう
分かりました!
ありがとうございました!

No.4034 - 2008/11/23(Sun) 22:23:28
(No Subject) / jiro
∫x/{x+√(x+2)}dx という問題を解いてみたのですが、
解答は
x-2√(x+2)+(3/8)log{√(x+2)+2}-(2/3)log│√(x+2)-1│+Cで、
自分の答えは
x-2√(x+2)-(2/3)log{√(x+2)+2}+(3/8)log│√(x+2)-1│+Cでした。
計算ミスかと思い何度見直しても間違いがわかりません。
自分の答えは正解になるのかどうか教えていただきたいです。
よろしくお願いします。

No.4024 - 2008/11/23(Sun) 13:43:16

Re: / ToDa
>自分の答えは正解になるのかどうか

その答えを微分してみればよいのではないでしょうか。

No.4025 - 2008/11/23(Sun) 15:05:41
算数の問題です / 迷子
1辺の長さが1cm立方体を積み上げ、
たて14cm 横26cm 高さ18cmの直方体を作った。

今、左下の角から反対側の右上の角までを
まっすぐ結ぶように細い穴をあけ針金をとおす。

穴と針金の太さは考えないとすると、
針金が通る積み木は全部でいくつできるか。

わかりにくい説明で申し訳ありません。
図をかけないのでご了承ください。
できればわかりやすい小学生的な解法でお願いします。

No.4023 - 2008/11/23(Sun) 13:26:50

Re: 算数の問題です / らすかる
縦横高さ全部2で割り切れますので、直方体の中心は立方体の角です。
2で割ると7,13,9となり、どの二つも最大公約数が1なので、直方体の
中心以外では辺や頂点は通らず、必ず面を通ります。
端の立方体から中心に行くまでに、縦方向に面の境界を6回、
横方向に面の境界を12回、高さ方向に面の境界を8回通りますので、
境界は全部で26回通り、中心に行くまでに27個の立方体を通ります。
よって対角線では54個です。

No.4029 - 2008/11/23(Sun) 17:44:13

Re: 算数の問題です / angel
いきなり立体では想像し辛いので、平面上の類似問題を考えます。
例として 1cm×1cmの正方形を縦5×横7つなげた長方形に対し、左下から右上まで直線を引いた場合、線が通る正方形の数を調べましょう。
※絵を書いて確かめてみて下さい。

左からa個目、下からb個目の正方形を (a,b) と表すとすると、線が通る正方形は
 A(1,1),B(2,1),C(2,2),D(3,2),E(3,3),F(4,3),G(5,3),H(5,4),I(6,4),J(6,5),K(7,5)

の 11個です。
ここで重要なのは、どの正方形を通るかではありません。
直線が縦の境界、横の境界どちらを横切るかです。
A→B, C→D, E→F, F→G, H→I, J→K の6箇所(7-1)で縦の境界を横切り、
B→C, D→E, G→H, I→J の4箇所(5-1)で横の境界を横切っています。
注意すべきは、縦と横の境界を同時に横切る(正方形の頂点を通る)ことがない、ということです。
Aから始めて、境界を横切る度に対象の正方形が増えますから、1+(7-1)+(5-1)=11個ということが計算できます。

No.4030 - 2008/11/23(Sun) 18:00:33

Re: 算数の問題です / angel
続きは…これを応用するわけですが、
らすかるさんの書かれている通りですので割愛します。

No.4031 - 2008/11/23(Sun) 18:02:36

Re: 算数の問題です / 迷子
みなさん丁寧な解説ありがとうございました☆
No.4073 - 2008/11/26(Wed) 14:53:04
数学?Tです / ☆
sinθ−cosθ=1/2のとき、次の式の値を求めよ。ただし、0゜≦θ≦90゜とする。

(1)sinθcosθ
(2)sin^3θ−cos^3
(3)1/sinθ−1/cosθ

この問題を解いてみたのですが(1)は3/8、(2)は11/16であってますでしょうか?

あと(3)が分からないので教えて下さい(>_<;)宜しくお願いします。

No.4017 - 2008/11/23(Sun) 03:33:35

Re: 数学?Tです / angel
計算したところ、(1) 3/8, (2) 11/16 となりました。あっていると思います。
(3) は通分してみると良いです。
 1/sinθ-1/cosθ
 =(cosθ-sinθ)/(sinθcosθ)
 =-(sinθ-cosθ)/(sinθcosθ)

No.4018 - 2008/11/23(Sun) 09:20:17

Re: 数学?Tです / ☆
有難うございます!
お陰で助かりました(^-^)

一つ質問なのですが、問題に0゜≦θ≦90゜とありますが、これはどういう意味なのでしょうか?

また、0゜≦θ≦゜180の場合はどう変わるのか教えて頂けますか?(>_<)

No.4021 - 2008/11/23(Sun) 12:24:51

Re: 数学?Tです / angel
数Iなので、基本は0°≦θ≦180°ですね。
この範囲で、問題の条件に当てはまるのはθ≒65.7°だけです。
※sinθ=(√7+1)/4, cosθ=(√7-1)/4 … 計算してみるのも良いでしょう
なので、0°≦θ≦90°でも変わりません。深い意味はないでしょう。

なお、数II以降で、0°≦θ<360°と範囲が拡張されると、θ≒204.3°もあります。
※sinθ=(1-√7)/4, cosθ=(-1-√7)/4

No.4028 - 2008/11/23(Sun) 17:21:07

Re: 数学?Tです / ☆
分かりました。
有難うございました(^-^)

No.4032 - 2008/11/23(Sun) 18:21:37
流水算 / みかん 小5
教えてください。

駅から250m離れたテーマパークまでの間に「動く歩道」が取りつけてあります。「動く歩道」上の途中には、P地点とQ地点があり、Q地点から駅までは、テーマパークからP地点までの距離より4m長くなっています。「動く歩道」はテーマパークからP地点までは分速30m、P地点からQ地点までは分速50m、そしてQ地点から駅までは、分速30mで動きます。「動く歩道」の上をイチロー君が分速110mで歩くと、テーマパークから駅まで行くのに、3分27秒かかりました。
(1)テーマパークからP地点までの距離は何mですか。
(2)「動く歩道」に並行している道を1mの間隔で、イチロー君と同じ向きに歩いている人達がいます。
イチロー君は、「動く歩道」の上をP地点からQ地点まで歩くとき、この人達を2秒ごとに追いぬきました。この人達の歩く速さは分速何mですか。

よろしくお願いします。

No.4014 - 2008/11/23(Sun) 00:20:30

Re: 流水算 / みかん 小5
テーマパーク___P________Q____駅

      イチロー→      ←動く歩道

「動く歩道」を逆走する問題なのですが、わからなくて苦しんでいます。よろしくお願いします。

No.4036 - 2008/11/23(Sun) 22:49:39

Re: 流水算 / angel
とりあえず(1)だけ。
テーマパーク・P間と、Q・駅間では、イチロー君の速度と歩道の速さの差より、イチロー君は分速(A)mで進みます。
また、PQ間では、歩道の速さが変わるため、イチロー君は分速(B)mで進みます。
ここで、PQが246m、つまり、テーマパーク・P間が0m、Q・駅間が4mという極端な状況を考えてみましょう。
イチロー君がテーマパークから駅まで行くには、( (4+0)÷(A)+246÷(B) )×60=(C)秒かかります。
しかし、実際には3分27秒=(D)秒と、もっと短い時間で着いています。
もし、テーマパーク・P間が1m長くなったとすると、と考えてみましょう。この時、Q・駅間も1m長くなり、PQ間は逆に2m短くなります。
そして、駅・テーマパーク間にかかる時間は、( 2÷(B)- 2÷(A))×60=(E)秒短縮されることになります。
そうすると、((C)-(D))÷(E)=(F)を計算することで、極端な状況から比べて、テーマパーク・P間が(F)m長いことが分かるため、答えは(F)となります。

極端な状況を考えて、そこからどれくらいズレがあるかを考えるのは、鶴亀算等を含めた常套手段ですね。

No.4037 - 2008/11/23(Sun) 23:06:39

Re: 流水算 / みかん 小5
ありがとうございました。
よくわかりました。

No.4045 - 2008/11/24(Mon) 18:38:05
板違いですが、すいません / 高1
板違いは重々承知の上で高校化学の質問させて頂いてよろいいですか?
信頼できる質問を受け付ける板がここだけになってしまったので。
2MnO4マイナス+5H2O2+6Hプラス→2Mnニプラス+5O2+8H20
の両辺に2Kプラスと3SO4ニマイナスを加えると、次式が得られる。
2KMnO4+5H2O2+3H2SO4→K2SO4+2MnSO4+5O2+8H2O
とあるのですが、何故2MnニプラスがK2SO4+2MnSO4に分かれるのでしょうか?ご教授お願いします。
もし差支えがありましたら、削除して頂いても構いません。

No.4013 - 2008/11/22(Sat) 22:49:06

Re: 板違いですが、すいません / ヨッシー
分かれるわけではありません。
加えた(という表現も変ですが)2K+と3SO4 のうちの
2K+とSO4 とで、K2SO4 が出来るので、
その分が増えるだけです。
2Mn2+ は、2MnSO4 になるだけです。

No.4016 - 2008/11/23(Sun) 00:49:37

Re: 板違いですが、すいません / 高1
どうも有難うございました。また、宜しくお願いします。
No.4081 - 2008/11/26(Wed) 21:01:08
全20779件 [ ページ : << 1 ... 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 ... 1039 >> ]