[ 掲示板に戻る ]

過去ログ閲覧モード

高2 / 本田FC
数学 確率 教えてくださいお願い致しますm(_ _)m

「ある工作機械が2日連続で故障する確率は1/3、2日連続で故障しない確率は1/2である。
今日、この機会は故障した。このとき4日後にこの機械が故障しない確率を求めなさい」
という問題で
解答は漸化式で考えています
以下解答をかきますね。

n+1日後に故障しない=n日後に故障しなくて、【n+1日目も故障しない】or n日後に故障して、n+1日目は故障しない
より、n日後に故障しない確率をPnとおくと、
Pn+1=Pn×1/2 +(1-Pn)×{1-(1/3)}

とまずここまで。
解答には上記のように書かれていました。
そこで疑問に思ったところは、【n+1日目も故障しない】=2日連続して故障しない とかかれていたのです。
なぜこのような解釈になるのかわかりません
n日後に故障しなくて、【n+1日目も故障しない】=2日連続して故障しない
なら分かるのですが・・・

そして続きです。
さっき表した漸化式を整理すると
Pn+1=Pn×1/2 +(1-Pn)×{1-(1/3)}

Pn+1 - 4/7=-1/6×(Pn-4/7)となりました。
ここからが問題なんです。
Pn-4/7=anとおくと
an+1=-1/6an
ここは大丈夫です。
が、次です。
an+1=a0(-1/6)^n+1 [a0はaゼロという意味です]となっていたのです。
これは
an+1=ran 型の漸化式で
an+1=ran →an+1=r^n・a1より an=r^n-1・a1 と表す事のできるこの結果を利用して

この問題の場合
an+1=-1/6an

an+1=(-1/6)^n・a1

-1/6の次数のnが1増えればa1 つまり項は1減った形になるので
an+1=(-1/6)^n+1・a0
ということでしょうか?
a0を引っ張り出してきたのは
P0=0 (0日後 つまり【今日】は故障しているのだから0日後に故障しない確率p0は存在しない)
を利用するためなんでしょうか?

かなり長文になってしまいましたが。
自分の解釈があってるのか間違っているのか不安でたまりません。
だれか教えてください。おねがいします。

No.10751 - 2010/07/02(Fri) 18:26:52

Re: 高2 / ToDa
落ち着いて、疑問点を再度明確にしてみてください。

----
>そこで疑問に思ったところは、【n+1日目も故障しない】=2日連続して故障しない とかかれていたのです。
>なぜこのような解釈になるのかわかりません
>n日後に故障しなくて、【n+1日目も故障しない】=2日連続して故障しない
>なら分かるのですが・・・


太字の2カ所は、全く同じ意味のことを書いているように思います。

No.10752 - 2010/07/02(Fri) 22:37:19

Re: 高2 / 本田FC
そこで疑問に思ったところは、【n+1日目も故障しない】=2日連続して故障しない とかかれていたのです。
>なぜこのような解釈になるのかわかりません
>【n日後に故障しなくて、n+1日目も故障しない】=2日連続して故障しない
>なら分かるのですが・・・


↑直しました。
>【n日後に故障しなくて、n+1日目も故障しない】=2日連続して故障しない
ならしっくりくるのです。例えばn=3だとすると
3日後に故障しなくて、4日目にも故障しない
これはいいかえれば2日連続故障しないということですよね?
でも最初の、【n+1日目も故障しない】=2日連続して故障しない がわからないんです。
おねがいします

No.10759 - 2010/07/03(Sat) 06:49:43

Re: 高2 / 七
【n+1日目も】の【も】はどういうときに使いますか?
【n日後に故障して、n+1日目も故障しない】という使い方をしますか?
ToDaさんの仰るとおり
2カ所は、全く同じ意味のことを書いているように思います。

No.10760 - 2010/07/03(Sat) 08:11:04
(No Subject) / ぶう
方程式において分母を払うと同値が崩れるというのは本当ですか?x^2+2x=1/x⇔x^3+2x^2=1として何か問題があるのでしょうか?誰か教えてください><
No.10735 - 2010/07/01(Thu) 22:48:54

Re: / らすかる
その式なら問題ありません。
No.10741 - 2010/07/02(Fri) 00:01:22

Re: / スーパーカブ
分母を払うことで0ではないという情報が式から消えるために同値でなくなることがありえるということです。

上の例では左の式の右辺ではxは0ではありません
右の式では一見xは0ではないという情報が抜けて見えますが明らかにX=0は満たさないので大丈夫です。パラメータが入ってしまうと注意が必要ですね。

No.10742 - 2010/07/02(Fri) 00:24:52

Re: / ぶう
方程式で実際に分母を払うことで同値が崩れてしまう例をどなたかお願いします。
No.10753 - 2010/07/02(Fri) 22:38:27

Re: / ToDa
方程式x/x = 1とx = xなんてどうでしょう。
前者はx=0を解にもちませんが後者はもちます。

No.10755 - 2010/07/02(Fri) 22:48:51

Re: / スーパーカブ
ax^2+bx+c=0とx^2+(b/a)x+c/a=0

ってかそれくらい自分でかんがえましょう

No.10756 - 2010/07/02(Fri) 23:20:57

Re: / ぶう
ToDaさんの例は分かりましたが、スパー株さんの例はどこがどのように同値が崩れているのか教えてください><
No.10757 - 2010/07/03(Sat) 00:03:58

Re: / ハオ
ax^2+bx+c=0
におけるaの値が0かもしれないからです。
0では割れないので^2+(b/a)x+c/a=0は定義できない事になります。

ただ ax^2+bx+c=0が2次方程式と明記されている場合には
明らかにa≠0ですのでaで割っても同値性は保たれます。

因みにスパー株さんではなくスーパーカブさんです(笑


No.10758 - 2010/07/03(Sat) 06:46:13
緊急です; / ★
A(2.1) B(-1.2) Cを頂点とする三角形が正三角形になるときという問題なのですが、


cを(x.y)とするとき、AB=BC=CAからAB2=BC2=CA2
ゆえに(-1-2)2+(2-1)2=(x+1)2+(y-2)2=(2-X)2+(1-y)2
よって(x+1)2+(y-2)2=10 3x=y
2式からyを消して(x+1)2+(3x-2)2=10 ゆえに2x2-2x-1=0
(1+√3/2,3+3√3/2)(1-√3/2,3-3√3/2)

2段目からの変換がまったくわかりません。
詳しいかいせつお願いします><







またA(1.4)B(−1.1)C(2.-1)この3点を頂点とするときどんな形の三角形か。も解説お願いします。

すみません;;

No.10732 - 2010/07/01(Thu) 21:10:59

Re: 緊急です; / ヨッシー
下の方に書いてある問題もそうですが、これらの問題をやる前に
乗り越えないといけない壁があります。

M(1,1)、N(3,2) のとき、MNの長さを求めよ。
M(1,1)、N(x,y) のとき、MNの長さを求めよ。

出来ますか?

No.10733 - 2010/07/01(Thu) 22:32:48

Re: 緊急です; / ★
できます。
No.10740 - 2010/07/01(Thu) 23:54:09

Re: 緊急です; / スーパーカブ
2乗は3^2(3の2乗)といった記号を使います。

どんな三角形か調べるために3辺の長さを調べます。
2辺が等しければ2等辺、ピタゴラスを満たせば直角etc

No.10743 - 2010/07/02(Fri) 00:29:33

Re: 緊急です; / ★
降参です・・

詳しい解答例教えていただけますか??
すみません;;

No.10745 - 2010/07/02(Fri) 02:02:47

Re: 緊急です; / ヨッシー
(-1-2)2+(2-1)2=(x+1)2+(y-2)2= (2-x)2+(1-y)2
の意味はわかるのでしょうか?
(-1-2)2+(2-1)2=(x+1)2+(y-2)2
より
 (x+1)2+(y-2)2=10 ・・・(1)
(x+1)2+(y-2)2= (2-x)2+(1-y)2
より
 3x=y ・・・(2)
ですね?
(2)を(1)に代入してxを求めると、
 x=(1±√3)/2
(2)より
 y=3(1±√3)/2 (複号同順)

結局、上に書いてある解答を、そのまま書いただけですね。

No.10746 - 2010/07/02(Fri) 06:37:58

Re: 緊急です; / ヨッシー
後半、AB,BC,CA の長さは求められますか?
求められるなら、その値を書いてください。

No.10747 - 2010/07/02(Fri) 06:40:03

Re: 緊急です; / ★
もう大丈夫です!
ありがとうございました。

No.10750 - 2010/07/02(Fri) 14:56:29
高2年、数2(3次方程式)おしえてください / ちっしー
x3+3x2+(a−4)x−a=0の異なる解が2つである場合のaの値を教えてください。

2つの場合とは、片方が重解ってことですよね??
とき方がよくわからないので教えてください。

No.10730 - 2010/07/01(Thu) 16:25:01

Re: 高2年、数2(3次方程式)おしえてください / 七
とりあえずx=1は解ですね。
重解x=1と他の解x=αをもつ。
または
x=1と1以外の重解x=αをもつ。
という2つの場合を考えましょう。

No.10731 - 2010/07/01(Thu) 17:50:30
一般のnを教えてください。 / 御手洗景子
(1)b=[1 1 1]
    [0 1 1]
    [0 0 1] としたとき,b^nをいくつかのnで計算して,一般のn(正負とも)について,その形を証明せよ。
(2)c=[1 1 1 1]
   [0 1 1 1]
    [0 0 1 1]
   [0 0 0 1]としたとき,c^nをいくつかのnで計算して,一般のn(正負とも)について,その形を証明せよ。
(1)については,b^2=[1 2 3 ]c^3=[1 3 6]
        [0 1 2 ] [0 1 3]
        [0 0 1 ] [0 0 1]という風に,b^4,b^-1,b^-2,b^-3あたりを計算したのですが,規則性がどうしてもわかりません。
(3)についても,c^2=[1 2 3 4]c^3=[1 3 6 10]
        [0 1 2 3] [0 1 3 6]
        [0 0 1 2] [0 0 1 3]
        [0 0 0 1] [0 0 0 3]という風に,c^4,c^-1,c^-2,c^-3あたりを計算したのですが,規則性がどうしてもわかりません。
一般のnを教えてください。

No.10727 - 2010/07/01(Thu) 09:39:20

Re: 一般のnを教えてください。 / angel
とりあえず、具体的な数式までは分からなくても、
(1)であれば、
・対角要素は常に1
・1行2列目、2行3列目の要素が等しい
という規則性に気付けば、数列の問題に落としこめるでしょう。
つまり、
(1 1 1)(1 x[n] y[n]) (1 x[n+1] y[n+1])
(0 1 1)(0 1  x[n])=(0 1    x[n+1])
(0 0 1)(0 0  1  ) (0 0    1  )
を仮定するわけです。
(2)も規模が大きくなりますが似たような話で。

No.10738 - 2010/07/01(Thu) 23:34:52

Re: 一般のnを教えてください。 / 御手洗景子
ありがとうございます。
数列で,規則性が見えてきました。

小問でまだ次の問題があるのですが,教えてください。

G=[cosθ   sinθ]
 [sinθ  -cosθ]としたとき,G^nをいくつかのnで計算して,一般のn(正負とも)について,その形を証明せよ。
ですが,G^nでnが奇数の時,[cosθ sinθ]
             [sinθ -cosθ]
nが偶数の時[1 0]
      [0 1]
となるのでよいのでしょうか?
この場合は,どうすればいいのでしょうか?

そうすると,証明の仕方がわからないのですが教えてもらえませんか?

No.10749 - 2010/07/02(Fri) 09:30:11

Re: 一般のnを教えてください。 / ヨッシー
2=G-2=E
であることから、G0=E と定義すると、
任意の正の整数nについて、
 G2n=(G2)n=En=E
また、
 G-2n=(G-2)n=E
よって、すべての偶数2nについて、
 G2n=E
また、すべての奇数2n+1について
 G2n+1=EG=G
となります。

No.10754 - 2010/07/02(Fri) 22:44:50
高2 確率 / 国崎
数学 確率です

数直線上の動点Aは最初の位置を原点とする。サイコロを投げて、奇数の目がでたときは-1
偶数の目がでたときは+1、Aを動かすとする。
8回サイコロを投げたときのAの座標をXとして、次の問いに答えよ。
(1)X=n(nは整数)となる確率を求めよ。
解答には
サイコロを8回なげたとき偶数がx回、奇数がy回でたとすると
x+y=8・・・?@
?]=x-y・・・?A
?]=nより
x-y=n・・・?A”
?@、?A”より
x=8+n/2 ・・・?B
y=8-n/2 ・・・?C
ここでxとyは整数なので?B、?Cよりnは偶数でなければならない。・・・@
また、偶数がx回、奇数がy回でる確率は
8Cx(1/2)^x(1/2)^y
=8C8+n/2×(1/2)^x+y
=8C8+n/2×(1/2)^8
よって@を考えて
nが奇数のとき0、nが偶数のとき8C8+n/2 /256

とあるのですが

【よって@を考えて
nが奇数のとき0、nが偶数のとき8C8+n/2 /256】の部分が全くわかりません。
ここさえわかればという感じなのですが・・・
だれかわかりやすく教えてください。おねがいします。

No.10725 - 2010/07/01(Thu) 07:45:25

Re: 高2 確率 / X
@よりn、つまりAの座標が奇数となることはありえないので
Aの座標が奇数となる確率は0です。
同様にnが偶数の場合も考えます。

No.10728 - 2010/07/01(Thu) 12:48:21
(No Subject) / 国崎
数学 確率【至急お願い致します】

次のような硬貨投げの試行を考える。
はじめに3枚の硬貨を投げて1回目とし、そのとき表のものがあれば、表のでたこうかのみをなげて2回目とする。
そのとき表のものがあれば、それらを投げる。
ある回で裏のみがでた場合、この試行は終了する。このとき、次の問いに答えよ。

(1)1回目でこの試行が終了しない確率
自分の考え:1枚のコインを1回投げたとき、そのコインがなくなる確率は1/2・・・?@(つまり裏がでればいい)
題意は3枚のコインを投げるのだから
3枚のコインについて?@がおこればいいので、1回目で終了する確率は(1/2)^3=1/8
よって1回目で終了しない確率は1-(1/8)=7/8

(2)2回目でこの試行が終了する確率

2回目でこの試行が終了する=【2回以内で試行が終了】-【1回目(1回以内)で試行が終了】を考えるというのはわかったのですが
解答に1枚のコインが2回以内でなくなるためには2回のうち少なくとも1回裏がでればいいのでその確率は1-(1/2)^2=3/4
とあったのですが
ようするにこれは
本来3枚のコインで考えるところを簡単にするためにとりあえず1枚のコインで考えて
そして1枚のコインを投げて表がでるか裏かでるかを考えているんですよね?
今考えているコインは1枚だけなのでこれが2回以内つまり1回目で裏がでればそれで試行は終了
1回目は表がでて2回目で裏がでれば2回目で試行が終了ということで↑のような記述になっているのですよね?
答えは19/64です。

(3)2回投げても終了しない確率
これは2回以内で終了する=2回目で終了する の余事象であると考えて
1-27/64=37/64 ということですよね?

(4)2回目で表が1枚だけでる確率

解答には2回目で表が1枚だけになる場合は2枚が2回以内でなくなり、1枚が表→表であればいいので
2回目で表が1枚だけになる確率は
3C2(3/4)^2(1/4)=27/64
とあるのですが(4)はこの解答を何度見ても理解できません。
日本語の意味が理解できていないです。
あとなぜ反復試行の公式が利用できるのかも謎です。
一番の謎は【2回目で表が1枚だけになる場合は2枚が2回以内でなくなり、1枚が表→表であればいいので】の部分です。
特に1枚が表→表 というのはどういうことなんでしょうか?
だれかわかるかた教えてください。
おねがいします。(長文すみません;

No.10723 - 2010/07/01(Thu) 07:44:23

Re: 高2 / 国崎
すみません高2です
No.10724 - 2010/07/01(Thu) 07:44:51

Re: / angel
「至急」と言われましてもねぇ…
それに応える義務は恐らく誰にも無くて。
見も知らぬ人から「至急やって」と言われてどう思われるか、ちょっと想像はした方が良いと思いますね。

もし時間が経つと意味が無くなるということなら、期限を切るのは悪くないと思いますがね。勿論、回答が必ず来るかどうかは保証の限りでない、ということは大前提として。

No.10734 - 2010/07/01(Thu) 22:39:51

Re: / angel
まあ、既に手遅れかも知れませんが。
(1)
特に問題ないでしょう

(2)
> 本来3枚のコインで考えるところを簡単にするためにとりあえず1枚のコインで考えて

まあそうとも言える…かな?
次のページ辺りにあるNo.10647が類題になるのですが、コインに名前を付ける ( つまり個々を区別する ) と見通しが良くなるのです。
例えば、A,B,Cと名づけましょうか。
それぞれ、何回目で彼らが脱落する ( 裏が出て、以降投げられる対象から外れる ) か、という見方をすると、A単独で、2回目までに脱落する確率が 3/4
A,B,C全てが、2回目までに脱落する確率は (3/4)^3
A,B,C全てが、1回目で脱落する確率は (1/2)^3
なので、(3/4)^3-(1/2)^3=27/64 という計算になります。

(3)
特に問題ないでしょう

(4)
上で言った通り、A,B,Cというように、コインを区別する考えで行ってみましょう。
2回目で表が1枚だけ、ということは、もし3回目があったとして、そこで投げられるのが1枚だけ。それがA,B,Cのどれなのか、というのでまず3C1通り。
例えばAが残ったとして。Aは残っているのだから、表-表と来ているはずなので、確率1/4
その場合B,Cはいずれも2回目までに脱落しているので、(2)で出た通り、それぞれ確率3/4
これを全部かけると、3C1×1/4×3/4×3/4 となります。

No.10736 - 2010/07/01(Thu) 22:59:29
(No Subject) / brabus
A、B、Cの三人でじゃんけんをする。一度じゃんけんで負けた者は、以後のじゃんけんから抜ける。残りが一人になるまでじゃんけんを繰り返し、最後に残ったものを勝者とする。ただしあいこの場合も一回のじゃんけんを行ったと数える。そのとき、次の確立を求めよ。
(1)一回目のじゃんけんで勝者が決まる確率
(2)二回目のじゃんけんで勝者が決まる確率
(3)三回目のじゃんけんで勝者が決まる確率

高校一年生です。先生の配った解説はありますが全くもって理解不能ですのでこちらに投稿させていただきました。
どうかわかりやすい解説を宜しくお願いします。

No.10721 - 2010/07/01(Thu) 04:58:59

Re: / angel
> 先生の配った解説はありますが全くもって理解不能ですので
…いや、そこは理解する努力を放棄しちゃダメでしょ。せめてどこまで理解できて、どこで詰まるか整理しないと…。
※誰かが解説をつけても、全く同じ状況になるんじゃない?

とりあえず、「じゃんけんで勝者が決まる」という漠然とした記述を具体的に書き出すこと。

(1)一回目のじゃんけんで勝者が決まる
これはもう、チョキ-パー-パーのような独り勝ちのケースしかない。

(2)二回目のじゃんけんで勝者が決まる
次の2通りが考えられる。
(2)-1 一回目があいこで、二回目で勝者が決まる。
一回目のあいことは、3人がグー・チョキ・パーのばらばらの手を出すこと。もしくは3人が全て同じ手を出すこと。
※独り勝ちでも独り負けでもない、と考える手もある。
二回目で勝者が決まるのは、(1)と同じ、独り勝ち。
(2)-2 一回目で独り負け、二回目で勝者が決まる。
一回目は独り負けなので、独り勝ちの裏返し。( 確率としては同じ )
二回目はもう2人勝負になっているので、同じ手でなければ勝者が決まる。

(3)三回目のじゃんけんで勝者が決まる
まじめに分類するなら、
(3)-1 3人あいこ-3人あいこ-独り勝ち
(3)-2 3人あいこ-独り負け-2人勝負で決着
(3)-3 独り負け-2人あいこ-2人勝負で決着
ただ、(3)-1と(3)-2をまとめて考えれば、3人あいこ-残り2回で決着、なので、(2)の結果を流用する事も可能。

それぞれの確率は、
(1) 1/3
(2)-1 1/9
(2)-2 2/9
(2)合計で 1/3
(3)-1 1/27
(3)-2 2/27
(3)-3 2/27
(3)合計で 5/27

No.10737 - 2010/07/01(Thu) 23:25:05
できれば,解説も加えて教えてください。 / 御手洗景子
[cosφ -sinφ]
[sinφ cosφ]=D(φ),

[cosφ sinφ]
[sinφ -cosφ]=G(φ)としたとき,

G(2φ)=D(φ)・M・D(-φ)なる行列Mを求めよ。

No.10718 - 2010/06/30(Wed) 23:34:47

Re: できれば,解説も加えて教えてください。 / ヨッシー
D(φ) は原点周りφの回転を表す行列。
なので、D-1(φ)=D(−φ)
また、Gは、Dにx軸対称の行列 B=(1 0)(0 -1) を右から掛けたものなので、
x軸に対して対称移動して、原点周りにφ回転させる行列。

G(2φ)=D(φ)・M・D(-φ)の左からD-1(φ)=D(-φ)
右からD-1(−φ)=D(φ) を掛けて、
 M=D(−φ)G(2φ)D(φ)
G(2φ)=D(2φ)B=D2(φ)B より
 M=D(φ)BD(φ)
となり、原点周りにφ回転し、x軸対称に移動し、φ回転させる
行列なので、結局x軸対称に移動しただけとなる。
 M=B
となります。

No.10719 - 2010/07/01(Thu) 00:32:13

Re: できれば,解説も加えて教えてください。 / 御手洗景子
ありがとうございます。
回転,ってイメージしにくいですね。
「左からD-1(φ)=D(-φ)
右からD-1(−φ)=D(φ) を掛けて」なんですが,左からとか,右からとかいうところがわからないので教えてもらえませんか?すいません。

No.10726 - 2010/07/01(Thu) 09:11:26

Re: できれば,解説も加えて教えてください。 / ヨッシー
行列Aに、行列Bを
左から掛ける BA
右から掛ける AB
です。

No.10739 - 2010/07/01(Thu) 23:44:14
空間ベクトル / 高校3年です
四面体OABCでOAを2:1に内分する点をP、ABを3:1にする点をQ、BCを4:1にする点をRとする。
平面OQCと直線PRの交点をSとする。このときベクトルOSをベクトルOA,OB,OCで表しなさい。

過程を書いていただけるとありがたいです。
お願いします。

No.10717 - 2010/06/30(Wed) 22:57:35

Re: 空間ベクトル / ヨッシー
OA
OB
OC とします。
条件より
 OP=(2/3)
 OQ=(+3)/4
 OR=(+4)/5
SはPR上の点なので、
 OS=(1-s)OP+sOR
  =2(1-s)/3+(s/5)+(4s/5)
またSは平面OQC上の点であるので、
 OS=tOQ+u
  =(t/4)+(3t/4)+u
と書けます。(s,t,uは実数)
は独立なベクトルであるので、
 2(1-s)/3=t/4
 s/5=3t/4
 4s/5=u
これらを解いて、s=10/11, t=8/33, u=8/11
よって、
 OS=(2/33)OA+(2/11)OB+(8/11)OC

No.10720 - 2010/07/01(Thu) 00:48:52

Re: 空間ベクトル / 高校3年です
わかりやすい解答

係数比較するんですね(^o^)


ありがとうございましたm(_ _)m

No.10729 - 2010/07/01(Thu) 15:38:32
平均 分散 / yuhi
ある県の女子高生の中で、めがねをかけている生徒の比率は36%である。
県内の500人の女子高生について調べたとき、めがねをかけている生徒の人数Xの平均と分散を求めよ。

途中経過も詳しく教えていただけると幸いです。

No.10711 - 2010/06/30(Wed) 00:11:54
二次不等式について / 高校2年生
すべての実数xに対して不等式x^2+ax+2a-3>0が成り立つように、定数aの範囲を定めよ。

この問題は頂点のy座標が>0と考えればいいというのはわかります。
ですが、問題集の解説に
「はじめからD<0としても良いが、不等式では平方完成するのが望ましい」と書いてありました。
どうしてですか?

No.10707 - 2010/06/29(Tue) 22:46:13

Re: 二次不等式について / angel
>「はじめからD<0としても良いが、不等式では平方完成するのが望ましい」

それは好みがあると思いますので、話半分でとらえるのが良いと思います。

ただ、判別式の正負で話を進めようとすると、形式的な解き方に陥り、記憶に頼らざるをえない ( 記憶違いがあったら即アウト ) というリスクがある、という考え方はあるかもしれません。

逆に、平方完成で行けば。
例えば今回の例だと、
 x^2+ax+2a-3>0
 ⇔ (x+a/2)^2 - 1/4・(a-2)(a-6)>0
ですから、見たまんま (a-2)(a-6)<0 を解いて 2<a<6 ということが分かりますから、確実かも知れませんね。

まあ、自分がどの解き方にどれくらい自信があるかでしょうか。

No.10709 - 2010/06/29(Tue) 23:13:57

Re: 二次不等式について / 高校2年生
angelさん、ありがとうございました。
No.10914 - 2010/07/19(Mon) 10:20:23
一次方程式 / キング
中1 数学

男子の数が16人、女子の数が20人のクラスでテストをしたところ、男子の平均点は65点、女子の平均点は68点だった。この時、女子の平均点はそのままでクラス全体の平均点を2点上げるには、男子の平均点を何点上げればよいか答えなさい。

方程式を使わないで解くことはできるのですが、方程式を使った解き方がわかりません。
よろしくお願いします。
テストが近いので、あせっています。

No.10705 - 2010/06/29(Tue) 22:27:46

Re: 一次方程式 / ヨッシー
たいていは、求める数量をxと置きますね。
この場合は、男子の平均をx点上げるとします。

元々の平均(クラス全体)は、
 (16×65+20×68)÷(16+20)
x点上げたあとの平均は
 {16×(65+x)+20×68}÷(16+20)
これが、2点上がるので、
 {16×(65+x)+20×68}÷(16+20)=(16×65+20×68)÷(16+20)+2

これを解きます。

No.10706 - 2010/06/29(Tue) 22:43:18

Re: 一次方程式 / キング
答えは4.5点になるのですが、方程式がよくわかりません。
16×65=1040
(16+20)×2=72
1040+72=1112
1112÷16=69.5
69.5−65=4.5
というように出してしまって、なぜかとっさに方程式が浮かびません。

No.10710 - 2010/06/30(Wed) 00:05:45

Re: 一次方程式 / キング
ヨッシー先生の方程式の途中の計算(数字)を教えて下さいませんか?
No.10714 - 2010/06/30(Wed) 00:40:52

Re: 一次方程式 / angel
方程式を作る場合には、ある数字に着目して2通り(以上)の解釈をしてみること。
どの数字に着目するかは時によりけりで、また1つに決まる訳でもないですが…、キングさんが計算した中で 1112 という数に着目してみましょうか。

1112 は何かというと、点数を上げた時の男子の点数の合計。
なので、

・合計に着目すると
 1112 = (元の男子の点数の合計) + (上げる必要のある点数の合計)

・平均点に着目すると
 1112 = ( (元の男子の平均点) + x ) × (男子の人数)
 ※ x を求める答、「男子の平均点を何点上げれば良いか」としています

ということは、1112 という数字が分かっていなかったとしても、

 (元の男子の点数の合計) + (上げる必要のある点数の合計)
 = ( (元の男子の平均点) + x ) × (男子の人数)

という関係ができているわけで、これが方程式です。
それぞれ、キングさんの計算式の中から引っ張ってきて当てはめると

 16×65 + (16+20)×2 = (65+x)×16
 ↑1040  ↑72    ↑1112÷16の逆

となります。
答を出す式が出せるのなら、それを組み替えることで方程式は作れるはず。

No.10716 - 2010/06/30(Wed) 03:14:15

Re: 一次方程式 / キング
angel先生

ありがとうございました。
おかげさまで、昨日のテストは満点をとることができました。

No.10722 - 2010/07/01(Thu) 07:32:19
高2 数学 / 国崎
数学 三角関数のグラフ

関数 y=|sin2θ|+2sin2θのグラフを書け。

僕はまず、sin2θ≧0のときy=3sin2θ・・・?@
sin2θ<0のときy=sin2θ・・・?A

?@、?Aのグラフを書けばOK?とおもったのですが
グラフが上手くかけません・・・
正直グラフを書くのは苦手です^^;
交わる点とかどうやってもとめたらいいんですか?;
誰か分かりやすく書き方を教えていただけないでしょうか?;;

また、1) sin2θ≧0、すなわち、0 + 2πn ≦θ≦π/2 + 2πn、π+ 2πn≦θ≦3/2・π+ 2πn(ただしnは整数) とあったのですが、これはどういうことなのでしょうか?

No.10701 - 2010/06/28(Mon) 23:41:40

Re: 高2 数学 / X
問題の解説が分かりにくいようであれば、
y=|sin2θ|+2sin2θ
の周期がπであることから、まず
0≦θ≦π (A)
の範囲でグラフを描くことを考えましょう。

その際、(A)の範囲から更に
sin2θ≧0のとき
sin2θ<0のとき
の場合のθについて場合分けしてグラフを描きましょう。

No.10703 - 2010/06/29(Tue) 15:14:20
(No Subject) / 大学生です
フーリエ変換を求めよ。
f(t)=exp(-ltl)

です。
やり方、どのように計算すればいいのか教えてください。

No.10700 - 2010/06/28(Mon) 20:23:46

Re: / X
フーリエ変換の定義式に従ってガリガリ計算しましょう。
No.10704 - 2010/06/29(Tue) 15:15:15

Re: / スーパーカブ
フーリエ変換の定義式に従ってゴリゴリ計算しましょう。
No.10744 - 2010/07/02(Fri) 00:31:16
有理関数を積分せよ という問題 / マリリン
∫1/(x^4-1)dx
という問題です。
部分積分にして考えましたが、再考せよとのこと。
何か、ヒントがありましたら、教えていただけるとありがたいです。
よろしくお願いします。

No.10694 - 2010/06/27(Sun) 14:32:37

Re: 有理関数を積分せよ という問題 / X
再考せよ、とは計算間違いをしているという意味でしょうか?。
そう解釈して、回答を。

1/(x^4-1)=1/{(x^2-1)(x^2+1)}
=(1/2){(x^2+1)-(x^2-1)}/{(x^2-1)(x^2+1)}
=(1/2)/(x^2-1)-(1/2)/(x^2+1)
=(1/4){(x+1)-(x-1)}/{(x-1)(x+1)}-(1/2)/(x^2+1)
=(1/4)/(x-1)-(1/4)/(x+1)-(1/2)/(x^2+1)
∴(与式)=(1/4)ln|(x-1)/(x+1)|-(1/2)arctanx+C
(C:積分定数)

No.10695 - 2010/06/27(Sun) 14:49:48

Re: 有理関数を積分せよ という問題 / マリリン
素早い回答ありがとうございます。

先ほどの質問の部分で、
「部分積分」ではなく、「部分分数に分けること」でした。
この「部分分数に分けること」自体を「再考すること」のようでした。
実は、自分で計算して
-(1/2)arctanx+log{(x-1)/(x+1)}^1/4+C 
と書き、「誤り」とコメントされました。

No.10697 - 2010/06/27(Sun) 16:50:05

Re: 有理関数を積分せよ という問題 / X
それは計算過程に部分分数を使うことではなくて
計算結果に誤りがあるということではないでしょうか?。
マリリンさんの計算結果の第2項ですが
>>log{(x-1)/(x+1)}^1/4
ではなくて
log|(x-1)/(x+1)|^1/4
としなければいけません。
(そうでないとx<1の場合に計算結果が実数でなくなり、
矛盾します。)

No.10702 - 2010/06/29(Tue) 15:06:27

玉川ではないですか? / 黄桃
「再考せよ」
「コメントされました」
とあるのは、99%玉川大学通信教育部のレポート問題ですが、これもそうではないですか?
レポートの一部であっても、人に聞いた答を書き写すのは学則に反すそうです。当然、レポート自体も不正レポートで無効(カンニング扱い)になるそうです。
ここまで回答を書かれてしまうと困るように思うのですが、いいのですか?

#この問題の通りなら部分分数に分けるのは普通だと思いますが、
#『「部分分数に分けること」自体を「再考すること」』となると、
#実は問題が違っている、なんてオチではないでしょうね?

No.10715 - 2010/06/30(Wed) 02:05:09
組み合わせの問題 / 少女B
[問] nの√n以上の全ての約数とnを2つの0か自然数の平方の差s^2-t^2として表す全ての組合せとの間に1対1対応がある事を証明せよ。
(例えば,15には√15以上の6,15という約数を持ち,また15=4^2-1^2=8^2-7^2と書ける)

という問題なのですが問題の意味からしてよく分かりません。
√15以上の15の約数って5と15しかないと思うのですが6はプリントミスなのでしょうか?

あと,どのような手順で証明をすればいいのでしょうか?

No.10690 - 2010/06/27(Sun) 04:57:36

Re: 組み合わせの問題 / 少女B
n=ab (但し,0<b≦a)と因数分解できたとすると
s:=(a+b)/2,t:=(a-b)/2とすれば
ab=s^2-t^2となるのかなあとも思いましたが

例えば,n=20,a=5,b=4とすると
s=(5-4)/2=1/2でsは自然数になりませんよね。

どうすればいいのでしょうか?

No.10691 - 2010/06/27(Sun) 06:14:38

Re: 組み合わせの問題 / 我疑う故に存在する我
2 は √2 以上の 2 の約数になるが、平方数 0, 1, 4, 9, ..... の差にならない。
No.10693 - 2010/06/27(Sun) 08:31:24

Re: 組み合わせの問題 / 少女B
> 2 は √2 以上の 2 の約数になるが、平方数 0, 1, 4, 9, ..... の差にならない。

すいません。それはそうでしょうが,

例えば,n=20,a=5,b=4とすると
s=(5-4)/2=1/2でsは自然数になりませんよね。

のケースでは私は何を勘違いしているのでしょうか?

No.10698 - 2010/06/28(Mon) 01:12:40

Re: 組み合わせの問題 / 少女B
すいません。

nは奇数という条件がついておりました。これで解けました。
どうもお騒がせ致しました。

No.10699 - 2010/06/28(Mon) 03:09:17
物理?T / ハオ
宜しくお願いします
No.10683 - 2010/06/26(Sat) 16:35:40

Re: 物理?T / ハオ
空欄(3)が分かりません。
解答では(1)で導いた式を漸化式に見立てて解を出しています。
確かにその方法は合っていると思いますが
僕の解き方のいけない部分が分かりません。
何処が間違っていますか。教えて下さい。
又画像を添付する際に300Kbに直すと文字が見づらくなってしまいます。光学の為に良い添付の仕方を教えて下さい

No.10684 - 2010/06/26(Sat) 16:41:05

Re: 物理?T / ヨッシー
パソコン+スキャナでしょうか?

解像度200DPI 位はないと、ちょっと読めないですね。特に添え字が。
解像度重視で、色を落としていく方法で、容量落とせばいいでしょう。
最悪、モノクロでも。

No.10685 - 2010/06/26(Sat) 18:57:28

Re: 物理?T / angel
とりあえず、見た範囲で。
(3)では、複数の立方体Aを繋ぐ複数の糸がある中で、一本の糸だけ張力を増して、立方体が動き出す直前の状況を考えているのだと読み取りました。

そうすると、その「一本の糸」に引かれている立方体は、強い張力・摩擦力を受けますが、そこから離れる毎に張力・摩擦力は弱まっていくことが想定されます。
※数珠繋ぎになった車を、先頭車両だけ引っ張って動かす時と似たようなもの

しかしながら、ハオさんの解き方を見ていると、特に摩擦力が全て共通の想定で計算しているように見えます。そこが問題ではないでしょうか。

(1)で、T2=αT1 のような関係を見つけているのだから、(3)に応用すると、
 Tn=αTn-1, Tn-1=αTn-2, …, T2=αT1
 つまり、Tn=α^(n-1)・T1
となると考えられます。

後、(2)で、既にθの値を求めているので、(3)の答からは、θを消去しなければなりません。( 途中まではθで良いけど )

という所で計算し直してみてはいかがでしょうか。

No.10708 - 2010/06/29(Tue) 23:04:17

Re: 物理?T / ハオ
返信遅くなって申し訳ありません。テスト期間中であったもので。
次回からはモノクロで挑戦してみます!
angelさん見にくい中わざわざ解読してくださり感謝致します。摩擦力の件が間違っているという指摘はズバリそのものでした。有難う御座います。

No.10748 - 2010/07/02(Fri) 07:11:38
算数 / のぃ
ちょっとした事なんですが,
気になったので教えてください。

商は小数第二位を四捨五入して,
小数第一位まで求めましょう。
51÷25

これを計算すると,2.04ですね。

四捨五入をすると2ですが,
小数第一位まで求めましょう。となっているので,
2.0と答えるべきですか?

No.10680 - 2010/06/26(Sat) 11:48:09

Re: 算数 / X
2と解答して問題ないと思います。
No.10681 - 2010/06/26(Sat) 12:48:35

Re: 算数 / ヨッシー
算数なので、何とも言えませんが、理科では、
 2 ×
 2.0 ○
です。
「小数第一位まで求めましょう。」となっているということは、
理科の要素を含んだ問題として、出題されているのでしょう。

No.10682 - 2010/06/26(Sat) 14:31:51
高2 数?U 対数 / あつき
よろしくお願いします。
なお、「log10の2」という書き方は、10が底にあたる数字で、2が真数にあたる数字のことです。

(1)(1/125)^2を小数で表したとき、少数第42位に初めて0でない数字が現れる。その値は何か。ただし、log10の2=0.3010とする。

(2)a>1のとき、(logaのx)^2-4≧-log(ax^3)+logaのxを満たすxの値の範囲を求めよ。

ちなみに、解答は(1)1で、(2)0<x≦1/a^3,a≦xです。

 

No.10676 - 2010/06/24(Thu) 23:28:46

Re: 高2 数?U 対数 / ヨッシー
(1) (1/125)^2=0.0000064 なので、問題に誤りがあります。

(2) log(ax^3) は、何が底ですか?

No.10679 - 2010/06/25(Fri) 22:46:10

Re: 高2 数?U 対数 / あつき
失礼しました。

(1)(1/125)^2→(1/125)^20

(2)log(ax^3)→logaの(ax^3)

の誤りでした。

No.10686 - 2010/06/26(Sat) 19:12:55

Re: 高2 数?U 対数 / ヨッシー
(1)
 (1/125)^20=5^(-60)=10^(-60)×2^60
10^(-60) は、位を移動するだけなので、
2^60 の最上位の数を調べます。
対数を取って、
 log102^60=60log102≒18.06
一方、
 log102^59=59log102≒17.759
なので、2^59→2^60 のところで、桁が1つ上がっています。
よって、最上位の数は1です。

(2)
(logax)2−4≧-loga(ax^3)+loga
ですね。
 loga(ax3)=logaa+logax3
  =1+3loga
より、logax=Xとおくと、
 X2−4≧−1−3X+X
より、
 X2+2X−3≧0
 (X−1)(X+3)≧0
よって、 X≦−3 または X≧1
a>1 より、
logax≦−3=loga-3
より
x≦a-3=1/a3

logax≧1=loga
より
x≧a

これらに、真数条件を考慮して、
 0<x≦1/a3または x≧a

No.10688 - 2010/06/26(Sat) 23:54:12

Re: 高2 数?U 対数 / あつき
いつも本当にありがとうございます。
非常に分かりやすいです。

No.10696 - 2010/06/27(Sun) 16:21:10
全22526件 [ ページ : << 1 ... 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 ... 1127 >> ]