[ 掲示板に戻る ]

過去ログ閲覧モード

高3 二次方程式 / はら
tが整数で2次方程式 x^2-2tx-2t+20=0 が二つの整数解を持つとする。
このとき、tと整数解を求めよ。

がわかりません。とりあえず2次方程式なので、判別式か解と係数の関係を使うのかと思ったんですが、どうも手がつけられません。
よろしくお願いします。

No.11072 - 2010/08/01(Sun) 21:37:27

Re: 高3 二次方程式 / rtz
2整数解をα,βとすると、
解と係数の関係から、α,βとtの関係式が2つできます。
ここからtを消去したのち、(aα+b)(cβ+d)=kの形にすれば、
(aα+b),(cβ+d)何れも整数ですから何通りか候補が出てきます。

あとはtを求めればいいのですが、
α,βの和、積とも偶数であること、
α,βには区別がないことを踏まえれば、
多少考えなければならない候補は減るでしょう。

No.11080 - 2010/08/01(Sun) 23:01:25
因数分解を2問教えてください / ゆっち
x^2-xy-6y^2-3x+4y+2 と

4x^2+(y-9)x-(y-2)(3y+1) の解き方を教えてください

No.11071 - 2010/08/01(Sun) 21:00:15

Re: 因数分解を2問教えてください / ヨッシー
x^2-xy-6y^2-3x+4y+2
=x^2-(3+y)x-6y^2+4y+2
=x^2-(3+y)x-2(y-1)(3y+1)
=x^2+{(2y-2)+(-3y-1)}x+(2y-2)(-3y-1)

4x^2+(y-9)x-(y-2)(3y+1)
たすきがけにより
4  -3y-1     -3y-1
1   y-2     4y-8
--------------------------
4  (2-y)(3y+1)  y-9
よって、
(与式)=(4x-3y-1)(x+y-2)

No.11079 - 2010/08/01(Sun) 22:53:58
高2 領域 / nu
nを自然数とするとき、放物線
   y=x^2 …?@
と直線
   y=x+n(n-1)…?A
で囲まれた領域をD〔n〕で表す。ただしD〔n〕は境界を含むものとする。D〔n〕の点(x,y)でx,yがともに整数となる点の個数を求めよ。

No.11070 - 2010/08/01(Sun) 20:24:07

Re: 高2 領域 / ヨッシー
(1)(2)を連立させると
 x^2-x-n(n-1)=0
 (x+n-1)(x-n)=0
より、x=1-n,n を解に持ちます。
x=1−n のとき y=(1-n)^2〜(1-n)^2 の1個
x=2−n のとき y=(2-n)^2〜(1-n)^2+1 の 2n-1個
x=3−n のとき y=(3-n)^2〜(1-n)^2+2 の 4n-5個
 ・・・
x=k−n のとき y=(k-n)^2〜(1-n)^2+(k-1) の (2k-2)n−k^2+k+1
これを、k=1〜n まで足すと、負の部分の個数が出ます。

同様に正の部分の個数を出して足します。

No.11078 - 2010/08/01(Sun) 22:45:43
高1 数学A / ベル
30未満の素数2、3、5、7、11、13、17、19、23、29をひとつずつ書いた10枚のカードから同時に3枚のカードを引く。引いた3つの素数の積を計算する。
(A)積が偶数となる組み合わせは何通りあるか。
(B)積の1の位の数字が5となる組み合わせは何通りあるか。
(C)積の1の位の数字が4となる組み合わせは何通りあるか。

No.11069 - 2010/08/01(Sun) 19:42:25

Re: 高1 数学A / ヨッシー
(A) 2と、あと2つ素数を選ぶ選び方です。
(B) 5と、あと2つ奇数を選ぶ選び方です。
(C) 2と、あと2つ、積の1の位が7となる2数を選ぶ選び方です。

No.11077 - 2010/08/01(Sun) 22:26:10

Re: 高1 数学A / ベル
(C)の4はそうやってつくるんですね!!
ありがとうございました><!

No.11082 - 2010/08/02(Mon) 14:25:40
高1 数学A / ベル
数直線上に35以下の自然数を座標とする点が35個並んでいる。同じ点を選ぶことを許して、最初に選んだ数をmとし、2番目に選んだ数をnとする。
(A)|m−n|≦3である場合の数を求めよ。
(B)m+n≧31かつ|m−n|≦3である場合の数を求めよ。

No.11068 - 2010/08/01(Sun) 19:41:50

Re: 高1 数学A / ヨッシー
(A)
m=1 のとき n=1,2,3,4 の4通り
m=2 のとき n=1,2,3,4,5 の5通り
m=3 のとき n=1,2,3,4,5,6 の6通り
m=4 のとき n=1,2,3,4,5,6,7 の7通り
m=5 のとき 7通り
 ・・・
m=31 のとき 7通り
m=32 のとき 7通り
m=33 のとき 6通り
m=34 のとき 5通り
m=35 のとき 4通り
以上より 35×7−6×2=233(通り)

(B)
m=14 のとき n=17 の1通り
m=15 のとき n=16,17,18 の3通り
m=16 のとき n=15,16,17,18,19 の5通り
m=17 のとき 7通り
 ・・・
m=32 のとき 7通り
m=33 のとき 6通り
m=34 のとき 5通り
m=35 のとき 4通り
以上、7×22−12−6=138(通り)

No.11076 - 2010/08/01(Sun) 22:23:43
高1 数学A / ベル
x+y+z=9(x≧0、y≧0、z≧0)を満たす整数(x,y,z)の組の個数は( )組である。
また、2x+y+z=9(x≧0、y≧0、z≧0)を満たす整数(x,y,z)の組の個数は( )組である。

( )の部分をうめよ。

No.11067 - 2010/08/01(Sun) 19:40:40

Re: 高1 数学A / ヨッシー
x=0 のとき、y、z の振り分け方は 10通り
x=1のとき 9通り
 ・・・
x=9のとき 1通り
よって、合計55通り

後半も、同様にしてできるでしょう。

※前半は、重複組み合わせを使って、
 3H9=11C9=55
としても求められます。

No.11075 - 2010/08/01(Sun) 22:16:01
高1 数学A / ベル
1から15までの整数を書いたカードが各一枚、計15枚ある。この中、同時に3枚のカードを取り出す。
(A)取り出された3枚のカードに書かれた数の中で、最小の数が5以下であるような選び方は何通りか。
(B)取り出された3枚のカードに書かれた数の中で、最小の数が5以下であり、かつ最大の数が11以上であるような選び方は何通りか。

No.11066 - 2010/08/01(Sun) 19:38:53

Re: 高1 数学A / ヨッシー
(A) 全ての取り出し方から、6以上の数だけを取り出す取り出し方を
除いたものが、求める場合の数です。
(B)
全ての取り出し方 ・・・A
6以上だけを取り出す取り出し方 ・・・B
10以下だけを取り出す取り出し方 ・・・C
6以上かつ10以下の数だけを取り出す取り出し方 ・・・D
とすると、A−B−C+D が求める場合の数となります。

No.11074 - 2010/08/01(Sun) 22:06:05
高校 / ベル
2と3と5のうち少なくとも1つで割り切れる自然数35個からなる集合について考える。この集合には2の倍数は20個、3の倍数は13個、5の倍数は11個ある。30の倍数はなく、15の倍数は2個ある。6の倍数の個数は、10と15のうち少なくとも一方で割り切れる要素の個数の1/2である。このとき6の倍数は( )個あり、10の倍数は( )個ある。

( )の部分をうめよ。

No.11065 - 2010/08/01(Sun) 19:34:12

Re: 高校 / ヨッシー
図のようなベン図を考えると、
 a+b+c+d+e+f=35 ・・・(1)
 a+d+f=20 ・・・(2)
 b+d+e=13 ・・・(3)
 c+e+f=11 ・・・(4)
 e=2   ・・・(5)
 2d=e+f ・・・(6)
が成り立ちます。(2)+(3)+(4)−(1) より
 d+e+f=9
(6) を代入して
 d=3 ・・・6の倍数
 f=4 ・・・10の倍数

No.11073 - 2010/08/01(Sun) 21:55:46
高2 / トレヴィシック
正の整数nでn^n+1が3で割り切れるものをすべて求めよ。

ぜんぜんわからないので教えてください。

No.11062 - 2010/08/01(Sun) 16:12:06

Re: 高2 / phaos
m を自然数として n = 6m - 1.

n = 1 から順番に調べていくと, 3 で割った余りが
2, 2, 1, 2, 0, 1, 2, 2, 1, 2, 0, 1, ...
と繰り返すので分かる。

No.11063 - 2010/08/01(Sun) 17:07:06
高1 数A / まっちょ
2個のさいころを同時に投げるとき、次の期待値を求めよ
(1)出る目の差の絶対値の期待値
(2)出る目の2つのうち、最大値の期待値

全然わかりません。泣
教えてください

No.11059 - 2010/08/01(Sun) 13:11:45

Re: 高1 数A / ヨッシー
この問題は出来ますか?

(1) 1個のサイコロを投げるとき、出る目の期待値
(2) 2個のサイコロを投げるとき、差が1となる確率

No.11060 - 2010/08/01(Sun) 15:06:45
(No Subject) / ゆりかもめ
カードと封筒をn枚ずつ用意し、それぞれに1からnまでの番号を書き、カードを1枚ずつ封筒にいれる。n枚の封筒のうち、k枚封筒の番号と中のカードの番号が一致し、残りのn−k枚は封筒の番号と中のカードの番号が一致しないような場合の数をan,kであらわす。

?@a3,0を求めよ。
?Aa5,2とa5,3を求めよ。
?Ba5,0+a5,1を求めよ。

No.11058 - 2010/08/01(Sun) 11:44:51

Re: / ヨッシー
(1)
231,312 の2通りなので、a3,0=2
(2)
番号が一致する2つの番号の選び方は 5C2=10通り
残りの3枚を番号が一致しないようにする方法は(1)より2通り
 10×2=20
よって、a5,2=20
また、2つの番号を選んで、それらを入れ替えると3枚が一致する状態になるので、
 a5,3=5C2=10
(3)
a5,0+a5,1+a5,2+a5,3+a5,4+a5,5=5!=120
であり、a5,5=1、a5,4=0 であるので、
 a5,0+a5,1=120−1−20−10=89

No.11064 - 2010/08/01(Sun) 17:38:48
高校一年 数A / ゆりかもめ
nを正の整数とする。数字1、2、3、・・・・、nを順序を考えに入れ重複を許さないで1列に並べたものa1、a2、a3、・・・・、anのうち、すべてのk=1、2、3・・・・、nについてak≦k+1を満たすものの個数をNとする。

?@n=3のときNの値を求めよ。
?An=4のときNの値を求めよ。
?Bn=5のときNの値を求めよ。

No.11057 - 2010/08/01(Sun) 11:36:29

Re: 高校一年 数A / ヨッシー
(1)
123 ○
132 ○
213 ○
231 ○
312 × a1=3≦1+1 を満たしていない
321 × a1=3≦1+1 を満たしていない
よって、N=4
(2)
満たすもの
1234、1243、1324、1342、
2134、2143、2314、2341
満たさないもの
1423、1432、2413、2431、
3124、3142、3214、3241、
3412、3421、4123、4132、
4213、4231、4312、4321
で、N=8

実は、n=5,6,7 に対して、
N=16,32,64 となるのですが、理由は分かりますか?
n=3 で○となったものと、n=4 で○となったものとを
見比べてみてください。

No.11061 - 2010/08/01(Sun) 15:19:02
高1 数A / まっちょ

AとBがテニスの試合を行うとき、各ゲームでA,Bが勝つ確率はそれぞれ2/3,1/3であるとする。3ゲーム先に勝った方が試合の勝者になるとき、Aが勝者になる確率を求めよ。

樹系図を書いて地道にやると、
Bが1回も勝たない時
(2/3)^3
Bが1回勝つとき
(2/3)^3×2
Bが2回勝つとき
(2/3)^3×2

これを全て足して
136/243になったのですが、
答えわ64/81でした。

簡単な解き方があれば
教えてください。

あと私がやった解き方
はどこが違うのでしょう

No.11054 - 2010/08/01(Sun) 01:19:04

Re: 高1 数A / ヨッシー
Bが1回も勝たない時
 (2/3)^3=8/27
Bが1回勝つとき
 勝つ順番は BAAA,ABAA,AABA の3通りであり、
 1回あたりの確率は
  (2/3)^3×(1/3)=8/81
 なので、全確率は 8/27
Bが2回勝つとき
 勝つ順番は BBAAA,BABAA,BAABA,ABBAA,ABABA,AABBA
 の6通りであり、
 1回あたりの確率は
  (2/3)^3×(1/3)^2=8/243
 なので、全確率は 16/81
全部足して、
 8/27+8/27+16/81=64/81
となります。

No.11055 - 2010/08/01(Sun) 03:01:56

Re: 高1 数A / まっちょ

よくわかりました!
ありがとうございます!


No.11056 - 2010/08/01(Sun) 08:50:08
高2 数学 【答えが同じになったのですが ちゃんとあってるのか不安です】 / 秋山ZERO
実数a,bに対してf(x)=a(x-b)^2・・・?@とおく。
放物線y=f(x)が直線y=-4x+4・・・?Aに接する
このときbをaを用いてあらわせ。

この問題で
答えでは
?@と?Aを連立してでた式を判別式を用いて重解をもてばよいということを利用して求めていました。

確かにこれでも納得できるんです。
ですが、
私は
「放物線?@と直線?Aの接点をPとおき、接点のx座標をtとすると
P(t,-4t+4)・・・?Bと表すことができる。
放物線?@は?Bを通るので代入して
〜〜〜

というような感じでときました。
結果答えは同じになったのですが
正直このとき方だといちいち連立でやるほうがはやいしPを出す必要もないし
やはり入試の答案でこんな回りくどく書いてしまうと
わかっていないと思われて
減点されるのでしょうか?
正直x→tに変わっただけだし時間の無駄・・ですよね^^;

ちなみに問題は神戸大学の文系数学です。

No.11051 - 2010/07/31(Sat) 23:59:20

Re: 高2 数学 【答えが同じになったのですが ちゃんとあってるのか不安です】 / angel
「時間の無駄」かどうかはなんとも。
自分で納得して解けるかどうかが、まず一番重要だと思いますから。

ただ、t を導入しない方が、答案の記述量・計算の手間等考えて、時間は短縮できるでしょうから、そっちに徐々に慣れていけば良いんじゃないでしょうか。

> わかっていないと思われて減点されるのでしょうか?

論理展開に問題がなければ減点はないでしょう。
たとえ回り道に思える解き方だとしても。

No.11052 - 2010/08/01(Sun) 00:32:44
高1 数A / まっちょ

     A
    /\
   /  \
  B ̄ ̄ ̄ ̄C

上の図で点PはAを出発点
とし、さいころを投げてA
→B→Cと移動する。偶数
の目が出たらその数だけ進
み、奇数の目が出たら1つ
進む。次に、もう1回さい
ころを投げて、Pは移った
点を出発点として、同様に
移動する。2回の移動後に
、PがBにある確率を求め
よ。


考え方がわかりません

教えてください

No.11048 - 2010/07/31(Sat) 17:26:54

Re: 高1 数A / らすかる
1,4,7,10,13,…進めばBにいることになりますが、
最小でも1+1=2、最大でも6+6=12ですから、
2回の合計が4か7か10になればいいですね。
2回とも奇数だと2ですから条件を満たしません。
奇数が1回の場合は合計が奇数ですから7になる必要があります。
奇数が0回の場合は合計が偶数ですから4か10になる必要があります。
これらを踏まえてパターンを列挙して確率を求めましょう。

No.11049 - 2010/07/31(Sat) 17:37:48

Re: 高1 数A / まっちょ

解けました!
詳しい説明ありがとうござ
います^^


No.11053 - 2010/08/01(Sun) 01:08:13
すいません 書き間違えました / かめた
(a^2-1)/(1-a)=1 でaについて解いたとき

答えがa=-2,1となりました。

考え方は a^2-1=1-a

a^2+a-2=0

(a+2)(a-1)=0

a=-2,1

です。 しかし、1のとき、式があわず0/0=1となりました。

どうすればいいのでしょうか? 教えてください

No.11041 - 2010/07/31(Sat) 11:55:36

Re: すいません 書き間違えました / らすかる
最初の式から1-a≠0すなわちa≠1です。
(a^2-1)/(1-a)=1
(a+1)(a-1)/(1-a)=1
1-a≠0なので分子分母を1-aで割って
-(a+1)=1
∴a=-2
のようにも計算できます。

No.11044 - 2010/07/31(Sat) 13:46:39
数列の問題 / masaki
こんにちは。基礎問題なのですが、どうやっても正解にたどり着きません。解法のどこが間違っているのですか?また、正しい解法おしえてください。よろしくお願いします。

次の数列{an}について答えよ。
5,55,555,5555,…
一般項nの式で表せ。
解){an}={5,55,555,5555,…}
  {bn}={50,50×10,50×10^2,50×10^3…}
bn=50・10^(n-1)

an=a1+Σ【上:n-1,下:k=1】(50・10^(k-1))

an=5+50(10^n-1)/(10-1)
=5+50(10^n-1)/9

ここまでが自分の解法です。
正解は5(10^n-1)/9 らしいのですが、行き詰まりました…。

No.11039 - 2010/07/31(Sat) 02:25:07

Re: 数列の問題 / かーと
>50(10^n-1)/(10-1)

n-1項の和なので 10^n → 10^(n-1) となりますね。
あとは出てきた式を整理すれば正しい式が得られます。

とにかく解ければいいということであれば、
9,99,999,9999・・・・
の一般項が (10^n)-1 であることから、
a[n] の一般項はこれを 5/9 倍すれば簡単に求まります。

No.11040 - 2010/07/31(Sat) 02:52:34

Re: 数列の問題 / masaki
なるほど!
丁寧な解説ありがとうございました!

No.11050 - 2010/07/31(Sat) 23:44:17
高1 数A / あい
A、B、C、D、E、F、Gの7文字を1列に並べる時AがBより左にあり、BがCより左にある確率を求めよ。

っていう問題教えてください(;_;)

No.11035 - 2010/07/30(Fri) 22:55:01

Re: 高1 数A / らすかる
ABCの順番は
ABC
ACB
BAC
BCA
CAB
CBA
の6通りあり、どれも同じ確率ですから
ABCの順番になる確率は1/6です。

No.11037 - 2010/07/30(Fri) 23:14:09
高1 数A / まっちょ

3個のさいころを同時に投
げる時、出る目の最小値が
3以上5以下である確率を
求めよ

という問題なのですが、
最小値が3,4,5の時で
場合分けをすると、
3→(2/3)^2
4→(1/2)^2
5→(1/3)^2
でこれらを足して49/72
と計算したのですが、
正解わ7/24でした

余事象も考えたのですが
最初と同じ答えになりま
した

教えてください


No.11033 - 2010/07/30(Fri) 21:38:08

Re: 高1 数A / ヨッシー
目の出方は 6~3=216(通り)

最小が5の場合の数:
 5,6だけで出る目の場合の数は
 2^3=8通り
 このうち、6,6,6 は除いて 7通り。
最小が4の場合の数:
 4,5,6 だけで出る目の場合の数は
 3^3=27通り
 このうち8通りは、4を使っていないので、
 27−8=19通り
最小が3の場合の数:
 3,4,5,6だけで出る目の場合の数は、
 4^3=64通り
 このうち27通りは3を使っていないので、
 64−27=37通り
合計 7+19+37=63
確率は、63/216=7/24 となります。

No.11034 - 2010/07/30(Fri) 22:00:40

Re: 高1 数A / まっちょ

そうやって解くんですか!
全然思いつきませんでした

ありがとうございます!

No.11036 - 2010/07/30(Fri) 23:06:50

Re: 高1 数A / らすかる
別解
目の出方は6^3=216通り
最小が3以上となるのは出目が3,4,5,6のみの場合なので4^3=64通り
このうち最小が6となるのは(6,6,6)の1通りなので
最小が3〜5となるのは64-1=63通り
∴63/216=7/24

No.11038 - 2010/07/30(Fri) 23:23:33

Re: 高1 数A / まっちょ

楽に解けますね!
別解ありがとうございます!

No.11047 - 2010/07/31(Sat) 17:17:59
高2 青チャート数?T147 / 秋山ZERO
右の図の折れ線で表される関数をf(x)とする。
このとき、y=f{f(x)}のグラフをかけ。また、0≦x≦1でf{f(x)}=xとなるxの値を求めよ。

グラフはxが0でyが2、1で4、2で3、3で1、4で0です。


答えはx=2/3です。
まず

解説
【与えられたf(x)の式は,
0≦x≦1のとき,y=2x+2で,値域は2〜4…?@
1≦x≦2のとき,y=−x+5で,値域は3〜4…?A
2≦x≦3のとき,y=−2x+7で,値域は1〜3…?B
3≦x≦4のとき,y=−x+4で,値域は0〜1…?C

さらに?@の式は
0≦x≦1/2のとき,値域は2〜3…?D

1/2≦x≦1のとき,地域は3〜4…?E

とわけておく

f(f(x))は,0≦x≦1のとき,内側の値は?@によるので,
?Dのとき外側のf(x)は?Bの式になり,

y=−2(2x+2)+7となるから
f(f(x))=xは,
−2(2x+2)+7=xを解いて,x=3/5。ところが,?Dのときのxの範囲に入っていないので解ではない。
?Eのとき外側のf(x)は?Cの式になり,

y=−(2x+2)+4となるから
f(f(x))=xは,
−(2x+2)+4=xを解いて,x=2/3。これは,?Eのときのxの範囲に入っているので解である。

グラフに関しては,

0≦x≦1/2のときは前出。
1/2≦x≦1のときは前出。
1≦x≦2のとき,外側のf(x)は?Cだから,y=−(−x+5)+4
2≦x≦5/2のときは,内側のf(x)外側のf(x)とも?Bだから,y=−2(−2x+7)+7
5/2≦x≦3のときは,外側のf(x)は?Aだから,y=−(−2x+7)+5
3≦x≦4のとき,外側のf(x)は?@だから,y=2(−x+4)+2】

グラフで
【さらに?@の式は
0≦x≦1/2のとき,値域は2〜3…?D

1/2≦x≦1のとき,地域は3〜4…?E

とわけておく】とするのはどうしてなんでしょうか?
それ以降も全くわかりません。
誰か分かる方教えてください。
お願いします

No.11027 - 2010/07/29(Thu) 23:32:18

Re: 高2 青チャート数?T147 / ヨッシー
>グラフで
>【さらに?@の式は
>0≦x≦1/2のとき,値域は2〜3…?D
>
>1/2≦x≦1のとき,地域は3〜4…?E
>
>とわけておく】とするのはどうしてなんでしょうか?


f(x) の値域が、f(f(x)) では、定義域になるので、
折れ線の折れ目の3のところで、分けるのです。

図のようにy=f(x) のグラフと、x=f(y) のグラフを描いて、
両者が交わる●の点が f(f(x))=x となる点で、0≦x≦1 では
x=2/3 です。

No.11031 - 2010/07/30(Fri) 06:57:51
全22740件 [ ページ : << 1 ... 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 ... 1137 >> ]