[ 掲示板に戻る ]

過去ログ閲覧モード

定積分 / 天空中央駅
次の定積分の求め方を教えてください。

?@∫[0,π]【xsinx/{3+(sinx)^2}】dx
?A∫[0,π/2]{xsinx/(1+cosx)+xcosx/(1+sinx)}dx

どうぞよろしくお願いします。

No.45266 - 2017/08/11(Fri) 17:53:21

Re: 定積分 / X
(1)
(与式)=∫[0,π/2]{xsinx/{3+(sinx)^2}}dx
+∫[π/2,π]{xsinx/{3+(sinx)^2}}dx
第二項において
t=π-x
と置くことにより
(与式)=∫[0,π/2]{xsinx/{3+(sinx)^2}}dx
-∫[π/2,0]{(π-t)sint/{3+(sint)^2}}dt
=∫[0,π/2]{xsinx/{3+(sinx)^2}}dx
+∫[0,π/2]{(π-x)sinx/{3+(sinx)^2}}dx
=π∫[0,π/2]{sinx/{3+(sinx)^2}}dx
=π∫[0,π/2]{sinx/{4-(cosx)^2}}dx
=π∫[0,π/2]{sinx/{(2-cosx)(2+cosx)}}dx
=(π/4)∫[0,π/2]{1/(2-cosx)+1/(2+cosx)}sinxdx
=(π/4)[log(2-cosx)-log(2+cosx)][0,π/2]
=(π/4)log3

(2)
(与式)=∫[0,π/4]{xsinx/(1+cosx)+xcosx/(1+sinx)}dx
+∫[π/4,π/2]{xsinx/(1+cosx)+xcosx/(1+sinx)}dx
第二項において
x=π/2-t
と置くと
(与式)=∫[0,π/4]{xsinx/(1+cosx)+xcosx/(1+sinx)}dx
-∫[π/4,0]{(π/2-t)cost/(1+sint)+(π/2-t)sint/(1+cost)}dt
=∫[0,π/4]{xsinx/(1+cosx)+xcosx/(1+sinx)}dx
+∫[0,π/4]{(π/2-x)cosx/(1+sinx)+(π/2-x)sinx/(1+cosx)}dx
=(π/2)∫[0,π/4]{sinx/(1+cosx)+cosx/(1+sinx)}dx
=(π/2)[-log(1+cosx)+log(1+sinx)][0,π/4]
=(π/2)log2

No.45270 - 2017/08/11(Fri) 18:26:09

Re: 定積分 / 天空中央駅
回答ありがとうございました。
No.45272 - 2017/08/11(Fri) 19:08:08
(No Subject) / がん
BC=a,CA=b,AB=cとして△ABCの面積を三通りで表してa,bをcで表しました。cosAもsinAも求めて鈍角三角形なのもわかりました。ここからヘロンの公式を使って解いた解答を教えて下さい。よろしくお願いします。
No.45265 - 2017/08/11(Fri) 17:52:26

Re: / がん
解答は4√7/7です。自分がヘロンの公式を使うと違う解答になってしまいます。
No.45267 - 2017/08/11(Fri) 17:53:54

Re: / らすかる
> ここからヘロンの公式を使って解いた解答を教えて下さい。
それであれば「ここから」の前までの計算を書いて下さい。

No.45269 - 2017/08/11(Fri) 18:06:46

Re: / がん
> > ここからヘロンの公式を使って解いた解答を教えて下さい。
> それであれば「ここから」の前までの計算を書いて下さい。


ここまでは解答と同じです。このあと私は
√2c×c×1/2×sinA=√7c^2/4という風に△ABCの面積を示しました。
ヘロンの公式を用いて△ABC面積をcを使って表してcの方程式をつくろうとしました。しかし、今もう一度ヘロンの公式で面積をcを使って表したら上記の面積と同じになりました。
cの方程式をつくろうとしました。

No.45295 - 2017/08/12(Sat) 01:11:17

Re: / がん
すみません。最後のcの方程式をつくろうとしました。はミスです。
No.45296 - 2017/08/12(Sat) 01:12:58

Re: / らすかる
> 今もう一度ヘロンの公式で面積をcを使って表したら上記の面積と同じになりました。
これは「自己解決した」ということでいいんですよね?

No.45297 - 2017/08/12(Sat) 05:45:34

Re: / がん
そうなりますね(笑)
でもこれだと面積二通りに表せていないのでヘロンの公式だと解けないということになりますね。
いろいろと面倒かけましたヽ(;▽;)ノ
ありがとうございました。

No.45299 - 2017/08/12(Sat) 06:44:11
数列 / rua
1/2がどうして出てくるのが分かりません。
よろしくお願いします

No.45261 - 2017/08/11(Fri) 17:14:34

Re: 数列 / らすかる
1/{k(k+1)}-1/{(k+1)(k+2)}
=(k+2)/{k(k+1)(k+2)}-k/{k(k+1)(k+2)}
={(k+2)-k}/{k(k+1)(k+2)}
=2/{k(k+1)(k+2)}
なので
1/{k(k+1)(k+2)}
=(1/2){1/{k(k+1)}-1/{(k+1)(k+2)}}
です。

No.45262 - 2017/08/11(Fri) 17:26:35
Re: Re:弧度法 / 前進
ラジアンはこの長さと角度の関係ですが半径はいつも1で
半径を2とかにすると値は変わるのではないでしょうか?

宜しくお願い致します。

No.45259 - 2017/08/11(Fri) 17:03:40

Re: Re:弧度法 / らすかる
ラジアンは「半径が1の時の弧の長さ」に対応する角度です。
No.45263 - 2017/08/11(Fri) 17:27:51

Re: Re:弧度法 / たなお
半径が2倍になると、弧の長さも2倍になりますよね。

ラジアン = 弧の長さ/半径

という関係が成り立っており、半径と弧が(つまり分母と分子が)同時に何倍になろうと、ラジアンに影響はありません。
なので半径が1でも2でも問題ありません。

No.45264 - 2017/08/11(Fri) 17:33:09
高2 / とりくる
(2sin2θsin6θ)/(1+2cosθ)
ただし0<θ<π/6とする。

この取りうる値の範囲を教えてください。(評価の仕方です、微分しようとしたら歯がたちませんでした)

No.45257 - 2017/08/11(Fri) 16:50:07

Re: 高2 / とりくる
(2sin2θsin6θ)/(1+2cos2θ)でした!分母が2シータでした
No.45260 - 2017/08/11(Fri) 17:05:37

Re: 高2 / らすかる
sin6θ=sin(2θ+4θ)
=sin2θcos4θ+sin4θcos2θ
=sin2θcos4θ+2sin2θ(cos2θ)^2
=sin2θ{cos4θ+2(cos2θ)^2}
=sin2θ{2(cos2θ)^2-1+2(cos2θ)^2}
=sin2θ{4(cos2θ)^2-1}
=sin2θ(2cos2θ+1)(2cos2θ-1)
なので
(2sin2θsin6θ)/(1+2cos2θ)
={2sin2θsin2θ(2cos2θ+1)(2cos2θ-1)}/(1+2cos2θ)
=2(sin2θ)^2(2cos2θ-1)
=2{1-(cos2θ)^2}(2cos2θ-1)
見やすいようにcos2θ=tとおくと
0<θ<π/6から1/2<t<1であり、
(与式)=2(1-t^2)(2t-1)
=-2(t+1)(2t-1)(t-1)
これは3次の係数が負でt=-1,1/2,1で0になる三次関数なので
1/2<t<1では極大値以下の正の値を全てとる。
微分すると
-2(2t-1)(t-1)-4(t+1)(t-1)-2(t+1)(2t-1)
=-4(3t^2-t-1)
3t^2-t-1=0の解はt=(1±√13)/6であり
極大値をとるt=(1+√13)/6のとき
(与式)=2(1-t^2)(2t-1)=2{1-(t+1)/3}(2t-1) (∵t^2=(t+1)/3)
=-2(2t^2-5t+2)/3
=-2(2(t+1)/3-5t+2)/3
=2(13t-8)/9
=2(13(1+√13)/6-8)/9
=(13√13-35)/27
となるので、
(2sin2θsin6θ)/(1+2cos2θ)がとる値の範囲は
0<(2sin2θsin6θ)/(1+2cos2θ)≦(13√13-35)/27
(等号はcos2θ=(1+√13)/6のとき)

No.45268 - 2017/08/11(Fri) 18:00:49
らすかるさん / こうたろう
ありがとうございました!とても助かりました!
No.45254 - 2017/08/11(Fri) 14:24:07
平方根の計算…? / こうたろう
積分の問題で平方根の計算が出たのですが全くわかりません。

写真の矢印の過程がわかりません。よろしくお願いします

No.45252 - 2017/08/11(Fri) 14:08:16

Re: 平方根の計算…? / らすかる
[3]√(27/2)
=[3]√{(27/8)×4}
=[3]√(27/8)・[3]√4
=[3]√{(3/2)^3}・[3]√4
=(3/2)[3]√4
=(3[3]√4)/2
です。

No.45253 - 2017/08/11(Fri) 14:13:00
高3 / ケルン
【問題】
z軸中心、半径2の円柱のうち、z≧0かつ3x+z≦3を満たす部分をKとおく。

(1)Kの体積Vを求めよ。
(2)Kの側面積Sを求めよ。

【解答】
(1)8π+9√3 (2)8π+12√3

解き方の解説をお願いします。

No.45251 - 2017/08/11(Fri) 14:08:00

Re: / X
(1)
条件から
0≦z≦3-3x
∴V=∫∫[D](3-3x)dxdy
(D:x^2+y^2≦4,z=0)
ここで
x=rcosθ
y=rsinθ
と置くと、ヤコビヤンをJとして
J=r
V=∫[θ:0→2π]∫[r:0→2](3-3rcosθ)rdrdθ
=∫[θ:0→2π][(3/2)r^2-(r^3)cosθ][r:0→2]dθ
=∫[θ:0→2π](6-8cosθ)dθ
=12π

(2)
条件から
S=∫[0→2π]z・2dθ
=2∫[0→2π](3-3x)dθ
=2∫[0→2π](3-3・2cosθ)dθ
=12π

No.45256 - 2017/08/11(Fri) 15:32:04

Re: 高3 / ケルン
>Xさん

答えが合わないようですが…。

No.45271 - 2017/08/11(Fri) 19:07:38
(No Subject) / ぎゃっぷ
軌跡と領域の問題です。

座標平面において2つの曲線C:y=ax^2+bxとD:y=x^3を考える。ただしa,b実数でa>0,b<0を満たすとする。
C,Dが異なる3つの交点を持ちCとDが囲む2つの領域のうち左側の領域の面積と右側の領域の面積の比が5:32となるようにa,bが動くときCの通過する領域を図示せよ。
難しくてやはり解けませんでした
よろしくお願いします

No.45248 - 2017/08/11(Fri) 13:50:27

略解 / angel
もうちょっと簡単に計算できるのかも知れませんが、取り敢えずゴリゴリ計算すれば一本道ではあります。

〇前半
交点のx座標の方程式は x^3=ax^2+bx x(x^2-ax-b)=0
異なる3交点を持つことから 解 0,α,β ( α<β ) と置く
このとき、 α+β=a >0, αβ=-b >0 結局 0<α<β

さて、f,F を次のようにおく
f(x)=x^3-ax^2-bx
F(x)=1/4・x^4-1/3・ax^3-1/2・bx^2 ( F'(x)=f(x) )
※要するに、F(x)はf(x)の不定積分の1つ

そうすると左右の面積は
左: ∫[0,α] f(x)dx = F(α)-F(0)
右: ∫[α,β] -f(x)dx = F(α)-F(β)

実際にF(0),F(α),F(β)の値は

F(0)=0

F(α)
= 1/4・α^4-1/3・aα^3-1/2・bα^2
= 1/4・α^4-1/3・(α+β)α^3-1/2・(-αβ)α^2
= 1/12・α^3・(2β-α)

F(β)=1/12・β^3・(2α-β)
※f(x)=x(x-α)(x-β) も、その不定積分 F(x) もα,βの対称式なので、α,βを入れ替えるだけ

面積比の条件から
( F(α)-F(0) ):( F(α)-F(β) )=5:32
⇔ 5(F(α)-F(β))=32(F(α)-F(0))
⇔ 27F(α)+5F(β)-32F(0)=0
⇔ 27・1/12・α^3・(2β-α)+5・1/12・β^3・(2α-β)-32・0=0
⇔ 5β^4-10αβ^3-54α^3・β+27α^4=0
⇔ 5(β/α)^4-10(β/α)^3-54(β/α)+27=0
これがα,βの満たすべき条件

ちょっと表現を整えて
方程式 5t^4-10t^3-54t+27=0 ( t=β/α>1 ) を解く
(t-3)(5t^3+5t^2+15t-9)=0
t>1 での解は t=3 のみ
 ※ g(t)=5t^3+5t^2+15t-9 とすると、g(t)=0 の t>1 での解はない
  計算により g(1)>0 かつ t>1 で g'(t)>0 と分かるから

結局、面積比が5:32を満たす必要十分条件は α>0, β/α=3
a,bを改めてαで表すと、
a=α+β=4α, b=-αβ=-3α^2
つまりCの方程式は C: y=4αx^2-3α^2・x

〇後半
α>0 で変化する時のCの通過する領域ということは、
y=4αx^2-3α^2・x というαの ( 高々 ) 2次方程式が α>0 の解を持つ、と読み替える。
αで整理すると、3x・α^2-4x^2・α+y=0

後は x の正負で場合分け

x=0 … y=0 のみ
x>0 … y≦0 または D/4=4x^4-3xy≧0 つまり y≦4/3・x^3
x<0 … y>0

x=0 のケースは x>0 のケースとまとめることができるので、最終的に
 x≧0 かつ y≦4/3・x^3
 または x<0 かつ y>0

No.45301 - 2017/08/12(Sat) 10:22:07
部分列極限 / tutuz
部分列極限の問題です。

---
任意のε>0に対して、α-ε<a[n]を満たすnが無限に存在するならば、α≦linsup(n->∞)a[n]である
---

という証明なのですが、

・ε=1/k(k=1,2,...)とおき、α-1/k<a[n[k]]ととることができる。
・k->∞のとき、α<linsup(n->∞)a[n] となる

という流れで示すと、どのようなときに等号が成り立つのか示す方法がわかりません。
(あるいは、証明の流れが間違っているか・・・)

教えていただけないでしょうか。よろしくお願いします。

No.45241 - 2017/08/11(Fri) 09:10:25

Re: 部分列極限 / IT
> ・k->∞のとき、α<linsup(n->∞)a[n] となる
はまちがっているのでは?

任意の自然数nについてa[n]=αのときで考えてみてください。

No.45242 - 2017/08/11(Fri) 10:54:23

Re: 部分列極限 / tutuz
ITさん

返信ありがとうございます。
確かに、数列a[n]=αとすれば、その部分列a[n[k]]=αですので間違っていました。

k->∞のときは|a[n[k]]-α|<1/k より a[n[k]]はαに収束するので、
α≦limsup(n->∞) a[n]

となるという認識で合っていますでしょうか。

No.45243 - 2017/08/11(Fri) 11:31:51

Re: 部分列極限 / IT
> k->∞のときは|a[n[k]]-α|<1/k より a[n[k]]はαに収束するので、

|a[n[k]]-α|<1/k は、なぜいえますか?

No.45245 - 2017/08/11(Fri) 13:10:30

Re: 部分列極限 / tutuz
>|a[n[k]]-α|<1/k は、なぜいえますか?

以下のように考えました。

・ε=1/k(k=1,2,...)とおき、α-(1/k)<a[n[k]]ととることができるから
α-(1/k)<a[n[k]]
⇔-a[n[k]]+α<1/k
⇔-(a[n[k]]-α)<1/k
⇔|a[n[k]]-α|<1/k

がこの式変形は誤っているでしょうか。

No.45246 - 2017/08/11(Fri) 13:22:26

Re: 部分列極限 / IT
> ⇔-(a[n[k]]-α)<1/k
> ⇔|a[n[k]]-α|<1/k

最後の絶対値にしたところが間違いです。
たとえば -2 < 1 ですが |-2|< 1 ではないです。

a[n[k]]-α>0 のとき
 -(a[n[k]]-α)<0 なので-(a[n[k]]-α)≠|a[n[k]]-α|です。

α=0,任意の自然数nについてa[n]=1 のときで考えてみてください。

No.45247 - 2017/08/11(Fri) 13:44:43

Re: 部分列極限 / tutuz
>α=0,任意の自然数nについてa[n]=1 のときで考えてみてください。
確かに絶対値の式変形が誤っていました。
部分列の極限とαは一般に一致しませんね・・

a[n]の部分列極限の一つをβとすると、k->∞のとき、α≦β≦limsup(n->∞)a[n]
ということであっていますでしょうか。

α=βとなる場合があるのかどうか考えていましたが、
α=-1、a[n]=(-1)^nで、a[n]の奇数項だけ集めた部分列を考えれば、
k->∞のときα=βとなりそうです。

No.45255 - 2017/08/11(Fri) 15:18:26
不定積分 / 天空中央駅
次の不定積分の求め方を教えてください。

?@∫e^(√x)dx
?A∫log{x+√(x^2+1)}dx

基礎的な内容かとは思いますが、どうぞよろしくお願いします。

No.45238 - 2017/08/11(Fri) 01:36:03

Re: 不定積分 / X
(1)
√x=t
と置くと
dx=2tdt
∴(与式)=∫(2te^t)dt
=2te^t-∫(2e^t)dt
=2(t-1)e^t+C
=2(√x-1)e^(√x)+C
(Cは積分定数)

(2)
x+√(x^2+1)=t
と置くと
x^2+1=t^2-2tx+x^2
x=(1/2)(t-1/t)
dx=(1/2)(1+1/t^2)
∴(与式)=(1/2)∫(1+1/t^2)logtdt
=(1/2)(t-1/t)logt-(1/2)∫(1+1/t^2)(1/t)dt
=…

No.45240 - 2017/08/11(Fri) 03:19:24

Re: 不定積分 / 天空中央駅
回答ありがとうございました。
No.45250 - 2017/08/11(Fri) 14:03:17
(No Subject) / nao
関数f(x)=lx(x+1)(x-1)|が微分可能でないxの値を求めよ。
m(__)m

No.45231 - 2017/08/10(Thu) 21:49:26

Re: / X
条件から
x≦-1,0≦x≦1のとき
f(x)=-x(x+1)(x-1) (A)
-1≦x≦0,1≦xのとき
f(x)=x(x+1)(x-1) (B)
そこで(A)(B)の境界となっている
x=0,1,-1
で微分可能であるかを確かめます。
(A)をg(x),(B)をh(x)とすると
g'(x)=-3x^2+1
h'(x)=3x^2-1
よって
lim[h→+0]{f(h)-f(0)}/h=g'(0)=1
lim[h→-0]{f(h)-f(0)}/h=h'(0)=-1
lim[h→+0]{f(-1+h)-f(-1)}/h=h'(-1)=2
lim[h→-0]{f(-1+h)-f(-1)}/h=g'(-1)=-2
lim[h→+0]{f(1+h)-f(1)}/h=h'(1)=2
lim[h→-0]{f(1+h)-f(1)}/h=g'(1)=-2
となるので求めるxの値は
x=-1,0,1

No.45239 - 2017/08/11(Fri) 03:13:26
(No Subject) / マチ
三角形ABCが角ABC=2×角ACBを満たすとき、その内接円の半径rと外接円の半径Rの比のr/Rのとりうる値の範囲を求めよ。

過去ログになっていたので....2倍の角ACBでした。答えてくださった方すみません教えていただきたいです

No.45230 - 2017/08/10(Thu) 21:43:09

Re: / たなお
昼間はらすかるさんが回答していましたが、回答します。

BC=2a,∠ABC=2θ、∠ACB=4θ (0 < θ < π/6)とおくと

 R = a/sin6θ

と置けます。
また、内接円の中心からBCへ垂線をおろし、BCとの交点をHとする。そして、BHの長さを t とすると

 tanθ = r/(2a-t)
 tan2θ = r/t

と置けます。ここからrを求めると

 r = (asin2θ)/(1+2cos2θ)

となります。
あとは昼間のらすかるさんの解説通りにやればいいと思います。

No.45235 - 2017/08/11(Fri) 00:43:02

Re: / たなお
すいません、訂正です。

誤:r = (asin2θ)/(1+2cos2θ)
正:r = (2asin2θ)/(1+2cos2θ)

No.45236 - 2017/08/11(Fri) 00:44:30
(No Subject) / つっか
f(x)=x/x^2+1の関数の極値を第二次導関数を使って求めよ。
お願いします。

No.45228 - 2017/08/10(Thu) 21:28:29

Re: / たなお
二次導関数をどう使うか分からないということでしょうか?

ここで言ってるのは、多分二次導関数を使って「極大か極小か」を判定しろってことだと思います。
なので、まず一次導関数で極値をとるx を求めて、二次導関数の符号で極大か極小か判定すればいいと思います。

ちなみにf(x)=x/(x^2+1) ですかね?表記の仕方で意味がことなるので注意しましょう。

No.45234 - 2017/08/10(Thu) 23:50:41
(No Subject) / ちえみ
y=x/logxの極値、凹凸などを調べて、そのグラフをかけ。
お願いします。

No.45227 - 2017/08/10(Thu) 21:06:45

Re: / たなお
y = f(x)/g(x) のとき、y' = {f '(x)g(x) - f(x)g'(x)}/(g(x))^2 を利用すると、どこでy' = 0 になるかわかると思います。

また、 lim[x→a]f(x)/g(x) = lim[x→a]f '(x)/g'(x)を利用すれば(詳細はロピタルの定理で検索してください)、x→0 やx → ∞ のときどうなるかもわかると思います。

やってみてください。

No.45233 - 2017/08/10(Thu) 23:33:01
数?V微分 / Aled Jones
f(x)=(1+x)^(1/x) (x>0)の導関数は何ですか?
No.45221 - 2017/08/10(Thu) 19:35:36

Re: 数?V微分 / らすかる
logf(x)=(1/x)log(1+x)
f'(x)/f(x)=(-1/x^2)log(1+x)+(1/x)(1/(1+x))
={x-(x+1)log(1+x)}/{x^2(x+1)}
なので
f'(x)={x-(x+1)log(1+x)}/{x^2(x+1)}・f(x)
={x-(x+1)log(1+x)}/{x^2(x+1)}・(1+x)^(1/x)
={x-(x+1)log(1+x)}(1+x)^(1/x-1)/x^2

No.45223 - 2017/08/10(Thu) 19:44:35

Re: 数?V微分 / Aled Jones
ありがとうございました。
No.45226 - 2017/08/10(Thu) 21:05:06
(No Subject) / ルチア
a,bを0でない定数とする。連続な関数f(x)が次の式を満たしているとする。

∫[a,x](x-t)f(t)dt=e^(ax^2)+bx^2

このとき、a,bの値およびf(x)を求めよ。

No.45219 - 2017/08/10(Thu) 19:06:20

Re: / らすかる
f(x)の原始関数の一つをg(x)、g(x)の原始関数の一つをh(x)とすると
∫(x-t)f(t)dt
=x∫f(t)dt-∫tf(t)dt
=xg(t)-tg(t)+∫g(t)dt
=(x-t)g(t)+h(t)+C1
なので
∫[a,x](x-t)f(t)dt
=h(x)-(x-a)g(a)-h(a)+C2
=h(x)-xg(a)+C3

h(x)-xg(a)+C3=e^(ax^2)+bx^2 の両辺を微分すると
g(x)-g(a)=2axe^(ax^2)+2bx … (1)
再度両辺を微分すると
f(x)=2a(2ax^2+1)e^(ax^2)+2b … (2)
(1)でx=aとすると
2a^2e^(a^3)+2ab=0
ae^(a^3)+b=0
∴b=-ae^(a^3) … (3)
また、問題の式でx=aとすると(左辺)=0なので
e^(a^3)+a^2b=0 … (4)
(3)(4)から
a=1,b=-e
これを(2)に代入して
f(x)=2(2x^2+1)e^(x^2)-2e

No.45237 - 2017/08/11(Fri) 01:17:31
最小値 / ζ
f=(4x^2-1)÷(4xy-1)の最小値を教えてください。
No.45218 - 2017/08/10(Thu) 18:39:54

Re: 最小値 / らすかる
x=1,y→1/4-0のときf→-∞なので最小値は存在しません。
No.45222 - 2017/08/10(Thu) 19:40:19

Re: 最小値 / ζ
存在しないのですね、
No.45244 - 2017/08/11(Fri) 12:29:26
空間ベクトル / rua
(2)(3)教えてください。
解答は、(2)2|↑BP|+2|↑HQ| (3)8です。
よろしくお願いします!

No.45216 - 2017/08/10(Thu) 18:21:33

Re: 空間ベクトル / たなお
(2)について回答します。
(便宜上、APベクトルなどを表すときに”ベクトル”という単語は略します。)

  AP = AB + BP、AQ = AD + DH + HQ

AB方向をx、AD方向をy、AE方向をz として各ベクトルの成分表示を考えると、

  AB = (2,0,0)、BP = (0,0,|BP|)
  AD = (0,2,0)、DH = (0,0,2)、HQ = (|HQ|,0,0)

  ∴AP = (2,0,|BP|)、AQ = (|HQ|,2,2)

ここから内積を求めると

  AP・AQ = 2・|HQ| + 2・0 + |BP|・2
       =2|BP| + 2|HQ|

となります。
(3)については、(2)が分かれば簡単ですね。

  

No.45224 - 2017/08/10(Thu) 19:58:42
高一数1 / ゆか
問5と問7の解き方を詳しく教えて欲しいです
No.45212 - 2017/08/10(Thu) 17:35:03

Re: 高一数1 / たなお
回答します。

ーーーーーーーーーーーーーーーーーーーーーーーーーー
問5

1.2kg の8%食塩水に含まれている食塩は

  1.2kg・0.08 = 0.096 kg

x kg の20%食塩水に含まれている食塩は

  xkg・0.20 = 0.20x kg

1.2kg の8%食塩水にx kg の20%食塩水を加えると

  食塩の量:0.096 kg + 0.20x kg
  食塩水全体の量:1.2 kg + x kg

となるので、これを元に計算する。
加えた後の濃度が12%のときは、

  (0.096 + 0.20x)/(1.2 + x) = 0.12


17%のときは

  (0.096 + 0.20x)/(1.2 + x) = 0.17

これらを計算してxを求めれば、選択肢Bが正解と分かります。

ーーーーーーーーーーーーーーーーーーーーーーーーーー
問7

x^2 - 3x の符号によって場合分けをします。

 (1)x^2 - 3x ≧ 0 のとき

   y = x^2 - 3x + x
    = x^2 - 2x
    = (x - 1)^2 - 1 ・・・※1

   ここで、x^2 - 3x ≧ 0より

     x(x-3) ≧ 0
     ∴x ≦ 0 , 3 ≦ x

   ※1は下に凸なので、x = 0か3のときに最小値をとる。
   x = 0 のとき y = 0、x = 3 のとき y = 3 なので、
   x^2 - 3x ≧ 0 のとき最小値は 0

 (2)x^2 - 3x ≦ 0 のとき

   y = -x^2 + 3x + x
    = -x^2 + 4x
    = (x - 1)^2 - 1 ・・・※2

   ここで、x^2 - 3x ≦ 0より

     x(x-3) ≦ 0
     ∴0 ≦ x ≦ 3

   ※2は上に凸なので、x = 0か3のときに最小値をとる。
   x = 0 のとき y = 0、x = 3 のとき y = 3 なので、
   x^2 - 3x ≦ 0 のとき最小値は 0

(1)(2)より、最小値は0

No.45220 - 2017/08/10(Thu) 19:34:21

Re: 高一数1 / ゆか
問7 の(2)の
=-x^2+4xがなぜ
=(x-1)^2-1になるんでしょうか?
低レベルな質問ですみません。

No.45258 - 2017/08/11(Fri) 17:03:03
全22471件 [ ページ : << 1 ... 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 ... 1124 >> ]