[ 掲示板に戻る ]

過去ログ閲覧モード

線形代数の問題 解いてみてください! / N
よろしくお願いします!
No.82395 - 2022/06/12(Sun) 13:09:41

Re: 線形代数の問題 解いてみてください! / X
1.
(a)
条件から
↑v[1]=(2,3,5)
↑v[2]=(1,-2,-1)
(b)
(a)の結果から
↑v[1]×↑v[2]=(7,7,-7)
∴↑n=(↑v[1]×↑v[2])/|↑v[1]×↑v[2]|
=(1/√3,1/√3,-1/√3)

2.
(a)
条件から求める距離はSの
中心のy座標の絶対値に等しく
5
(b)
(a)の結果より
Sの半径は5
Sの方程式は
(x-2)^2+(y-5)^2+(z+7)^2=25
(c)
前半)
点と平面との間の距離の公式により
求める距離は
|2+2・5+2・(-7)|/√(1^2+2^2+2^2)=2/3
後半)
(b)と前半の結果により
Sとπの交わりは円

No.82396 - 2022/06/12(Sun) 14:09:34
不等式について / しょう
この問題の解答なのですが5の方に=がついてるのはなぜなのでしょうか?
No.82392 - 2022/06/12(Sun) 09:37:23

Re: 不等式について / X
〇1(〇の中に1)の解の不等号の下に
等号がついていないからです。

No.82393 - 2022/06/12(Sun) 09:57:14

Re: 不等式について / ヨッシー
(2/3)a+2=5 つまり a=9/2 のときでも、
不等式はx=5を解に持たないことを、理解しようとしないと、
結局、前出の質問と同じやりとりになるだけです。

逆に=が付いていると、x=5 が含まれてしまうと考える根拠は何でしょうか?
我々回答者サイドは、a=9/2 であっても、x=5は解に含まれないという見解です。

No.82401 - 2022/06/12(Sun) 21:54:02
茨城大学 2017後期数学 / りょう
茨城大学 2017後期数学 問題がわかりません。

(2)の答えはP3=P4になってしまいます。

No.82384 - 2022/06/11(Sat) 14:42:42

Re: 茨城大学 2017後期数学 / りょう
画像が送れていなかったので、再送します。
No.82385 - 2022/06/11(Sat) 14:50:07

Re: 茨城大学 2017後期数学 / X
(2)
(i)G[3]について
一回目に助さんが赤玉を取り出し、
かつ助さんが勝つ確率は
{n/(n+k)}{(n-1)/(n+k-2)}
一回目に助さんが白玉を取り出し、
かつ助さんが勝つ確率は
{k/(n+k)}{n/(n+k-2)}
∴P[3]={n/(n+k)}{(n-1)/(n+k-2)}
+{k/(n+k)}{n/(n+k-2)}
={n(n-1)+kn}/{(n+k)(n+k-2)}
=n(n+k-1)/{(n+k)(n+k-2)}

(ii)G[4]について
一回目に格さんが赤玉を取り出し、
かつ助さんが勝つ確率は
{n/(n+k-1)}{(n-1)/(n+k-2)}
一回目に格さんが白玉を取り出し、
かつ助さんが勝つ確率は
{(k-1)/(n+k-1)}{n/(n+k-2)}
∴P[4]={n/(n+k-1)}{(n-1)/(n+k-2)}
+{(k-1)/(n+k-1)}{n/(n+k-2)}
={n(n-1)+n(k-1)}/{(n+k-1)(n+k-2)}
=n/(n+k-1)

∴P[3]-P[4]=n{(n+k-1)^2-(n+k)(n+k-2)}/{(n+k)(n+k-1)(n+k-2)}
=n/{(n+k)(n+k-1)(n+k-2)}>0
となるので
P[3]>P[4]

No.82387 - 2022/06/11(Sat) 15:07:33

Re: 茨城大学 2017後期数学 / りょう
助さんが白玉を引く確率
例えば(i)のばあいは{k/(n+k-1)}
は考えなくてよいのでしょうか。

No.82390 - 2022/06/11(Sat) 18:54:22

Re: 茨城大学 2017後期数学 / X
例えば(i)の場合、2回目に助さんが白玉を取り出すのは
無作為に行った結果ではありません。
飽くまで壺の中の白玉を1個減らすための操作です。
書き方を変えれば、例えば
壺の中のn+k-1個の玉を一旦全部取り出した上で
白玉を1個除いて残りのn+k-2個の玉を壺に戻す
という操作と同じです。
(ii)の場合も同様です。

No.82391 - 2022/06/11(Sat) 19:40:35
ご回答いただけると幸いです / オーフォル
こちらの問題息子に問われたものの答えがわからず苦戦しております、ご教授いただけると幸いです
No.82382 - 2022/06/11(Sat) 13:06:14

Re: ご回答いただけると幸いです / X
xの整式としてAをまとめると
A=yx^2+(2y+4)x+y^2+3
∴定数項は
y^2+3

No.82386 - 2022/06/11(Sat) 14:50:30

Re: ご回答いただけると幸いです / オーフォル
ご回答頂きありがとうございます🙇‍♂
No.82389 - 2022/06/11(Sat) 17:25:21
場合の数 場合分け / ふつく
チャレンジの解き方が分かりません
答えは567個です

No.82374 - 2022/06/11(Sat) 12:04:29

Re: 場合の数 場合分け / IT
(ヒントだけ)
2種類の数字例えば1,2だけから重複を許して4つの数字を選んで並べる方法の個数を数えて、そのうち1だけのもの2だけのものの個数を引きます。

2種類の数字の選び方の個数を考えます。

1000未満のものを除くため
 例えば0と1だけ、両方とも使うもののうち、千の位が0であるものの個数を数えます。

No.82378 - 2022/06/11(Sat) 12:53:47

Re: 場合の数 場合分け / ふつく
ありがとうございます
No.82379 - 2022/06/11(Sat) 12:58:02

Re: 場合の数 場合分け / IT
先に千の位が1〜9として考えても良いかも知れません。
No.82388 - 2022/06/11(Sat) 15:13:05
2階線形微分方程式の一般解 / とむ
写真の問題がわかりません。?@の式がu2を微分方程式に代入することで得られることはわかったのですが、a(x)の求め方がわからないので教えていただきたいです。
No.82362 - 2022/06/10(Fri) 22:08:49

Re: 2階線形微分方程式の一般解 / ast
マル1は a' に関する変数分離形 1-階線型方程式なので, (2-階線型方程式を解く段に至って) 解けないとは考えにくいのですが, なにか懸念点があるのであれば具体的に提示されたほうが回答が得られやすいと思います.
# 少なくとも出題意図として解函数に積分記号が複数回用いる形での解答は許容されていると思います.

No.82373 - 2022/06/11(Sat) 11:23:48
(No Subject) / 雨のち晴れ
1から30までの整数の中から12個を選んで
その和が40になる様な選び方は何とうりあるでしょうか。この問題の解き方をご教授してください。何卒よろしくお願いします。

No.82361 - 2022/06/10(Fri) 21:05:41

Re: / X
40-12=28
により求める場合の数は
28個の〇と11個の仕切り
でできる順列の数に
等しく
(28+11)!/(28!11!)=1676056044[通り]

注)
1+2+…+12=78>40
ですので、もし重複を許さずに問題の
整数を選ぶのであれば、選び方は
0[通り]
です。

No.82363 - 2022/06/10(Fri) 23:48:17

Re: / 雨のち晴れ
1から30までの中から5個を選んでその和が40になるとした場合は重複を許さなければなんとうりでしょうか。
解答有り難うございました。
丁寧な説明に感謝します。

No.82367 - 2022/06/11(Sat) 00:27:31

Re: / IT
Xさん
> 28個の〇と11個の仕切りでできる順列の数に等しく

 それだと
 例えば,1+27と27+1を別物として数えていると思いますが、同じ物として数えるべきではないでしょうか?

「分割数」などで検索すると漸化式が出て来ると思います。

No.82370 - 2022/06/11(Sat) 04:38:13

Re: / X
>>ITさんへ
ご指摘ありがとうございます。
>>雨のち晴れさんへ
ごめんなさい。もう見ていないかもしれませんが
ITさんの仰る通りです。

No.82371 - 2022/06/11(Sat) 07:01:16

Re: / 雨のち晴れ
有り難うございました
No.82372 - 2022/06/11(Sat) 10:05:07
不等式について / しょう
この答えが4<x<=5でこの方にイコールがついているのですが、なぜ5の方に=がついているのでしょうか?
No.82355 - 2022/06/10(Fri) 16:08:17

Re: 不等式について / X
添付されている写真は正しいですか?
質問内容と問題が対応していませんが。

No.82356 - 2022/06/10(Fri) 17:14:02

Re: 不等式について / IT
No.82313、No.82316 などを質問された方と同じ方なら、
1問ずつ解決されてから、新たな質問をされた方が良いと思います。

No.82359 - 2022/06/10(Fri) 19:04:25
線型代数の部分空間について / Se
ベクトルa, b, cがあって、その3つのベクトルが線型独立だった場合、線形部分空間wが
W=<a, b,>+ <c>とかW = < a, b> ∩<c>という表記は、
W=<a, b, c>と同じ意味であると考えていいのでしょうか?

No.82351 - 2022/06/10(Fri) 06:46:50
ベクトル / Sky
添付の問題ですが、自力で解くと
(6√5)/7となったのですが、正答は(4√5)/5でした。
なぜ(4√5)/5となるのかがわかりません。
途中式など解説いただけないでしょうか。

No.82348 - 2022/06/10(Fri) 00:33:40

Re: ベクトル / らすかる
距離の2乗は
{(1+2t)-(-1)}^2+{(3-t)-2}^2=5t^2+6t+5=5(t+3/5)^2+16/5
によりt=-3/5のとき最小値16/5をとりますので、
距離の最小値は√(16/5)=4√5/5となります。

No.82349 - 2022/06/10(Fri) 03:47:00

Re: ベクトル / Sky
なるほど。
ありがとうございました!

No.82368 - 2022/06/11(Sat) 00:28:14
(No Subject) / Kokona
高校数学です。

写真のように、円周上の位置にある扇形が、回転しながら円周上を移動します。
元の位置に扇形がちょうど一回転して元の位置に戻った時の、点aの描く曲線の長さはいくらになるのでしょうか?

No.82342 - 2022/06/09(Thu) 04:10:07

Re: / X
問題の条件が足りません。
>>扇形がちょうど一回転して
とありますが、回転の中心と扇形の位置関係は
どのようになっていますか?

図をそのまま解釈すると、点aの描く曲線は
扇形の形状に無関係の回転軌道の円周にしか
見えません。
この円周の半径は設定していないのですか?

No.82344 - 2022/06/09(Thu) 05:32:42

Re: / ast
# 解答はまだ考えてもいませんが, 回答者の問題解釈に齟齬がおきているようなので少し書きます.

もとの問題文(の正確な内容)はないのでしょうか?
> 円周上の位置にある扇形が、回転しながら円周上を移動します。
正確には「図の扇形が円周上を滑ることなく転がる」のような表現になっていませんか?
# 「滑ることなく転がる」は一種の専門用語で意味が一意に確定しますが, 質問者さんの表現だとよく伝わらない気がします

> 元の位置に扇形がちょうど一回転して元の位置に戻った時の
これも既に指摘があるように適当に与えられた図形同士だと必ず起きることではないので誤って伝わる表現のように思います. たぶんそうなるように与えられた円周の長さ=扇形の周囲の長さ(=2r+l)と「仮定した」のですよね?

> 点aの描く曲線の
a はどっちの図形のどの位置かはっきりわかるようにしてください.

No.82345 - 2022/06/09(Thu) 13:07:05

Re: / らすかる
図を見るとaは「円周上の点」に見えます。
そう考えると、扇形がどう動こうとaは動きませんので
曲線の長さは0になります。
もしかして、元の図ではaは扇形の内部に
書かれていませんでしたか?
(あるいは、「中心がAである扇形」などと書かれていませんでしたか?)
もし「元の問題文」があるならば、一字一句変更することなく
そのまま書き写して頂くか、あるいは問題文の写真を
提示して頂いた方が良いかと思います。

No.82346 - 2022/06/09(Thu) 13:11:41

Re: / Kokona
すいませんでした。問題文は次の通りです。
「半径r, 弧の長さlの扇形が、円周上を滑ることなく回転する。はじめに円周上にあった扇形の中心aがちょうど一回転して元の位置に戻った時、点aの描く曲線を求めなさい。」

Xさんへ。
円の半径はありません。このような図のままです。

astさんへ。
「滑ることなく転がる」という表現がありました。
与えられた図は、先の写真のような図です。
aは扇形の中心です。
すいませんでした。

らすかるさんへ。
すいません、問題文を上に書きました。

No.82350 - 2022/06/10(Fri) 05:02:31

Re: / X
問題の扇形を転がす円周の半径をRとすると
R=(l+2r)/(2π) (A)
今、点aの初期位置をA、円周の中心をOとして
OAを基準にした極座標を考えます。
但し動径方向をγ軸とします。

扇形の回転過程の対称性により
0≦θ≦π
の場合を考えます。

(i)r/R≦θ≦πのとき
点aの描く曲線は
半径r+R,中心角π-r/Rの円弧
の一端に
半径rの1/4円
を繋げた形状になるので、
曲線の長さをL[1]とすると
L[1]=R(π-r/R)+(1/4)・2πr
=πR-r+πr/2

(ii)0≦θ≦r/Rのとき
扇形の半径となっている線分と
円周との接点をBとすると、
△OaBについて三平方の定理より
γ=Oa=√(aB^2+OB^2)
=R√(1+θ^2)
∴曲線の長さをL[2]とすると
L[2]=∫[0→r/R-φ]γdθ
(但しφはtanφ=r/R,0<φ<π/2なる角)
=R∫[0→r/R-φ]√(1+θ^2)dθ
=R[(1/2){θ√(θ^2+1)+log(θ+√(θ^2+1))}][0→r/R-φ]
(注:計算過程は省略します)
=(R/2){(r/R-φ)√{(r/R-φ)^2+1}+log{(r/R-φ)+√{(r/R-φ)^2+1}}}

(i)(ii)から求める曲線の長さをLとすると
L=2(L[1]+L[2])
=2πR-2r+πr+(r-Rφ)√{(r/R-φ)^2+1}+Rlog{(r/R-φ)+√{(r/R-φ)^2+1}}
これに(A)を代入して

L=l+πr+{r-(l+2r)φ/(2π)}√{(2πr/(l+2r)-φ)^2+1}
+{(l+2r)/(2π)}log{(2πr/(l+2r)-φ)+√{(2πr/(l+2r)-φ)^2+1}}
(但し、φはtanφ=2πr/(l+2r),0<φ<π/2なる角)

注)
上記のように答えの形はかなり煩雑ですが、これ以上簡単な式には
できません。

No.82357 - 2022/06/10(Fri) 17:40:48
ベクトル / Sky
ベクトルで、2問わからない問題があるのですが、解答解説がなく途方に暮れています。
どなたか途中式含め、解答を教えていただけないでしょうか。

1問目は添付の問題です。

No.82338 - 2022/06/08(Wed) 22:56:25

Re: ベクトル / Sky
2問目はこちらです。
どなたかよろしくお願いします。

No.82339 - 2022/06/08(Wed) 22:57:22

Re: ベクトル / ヨッシー
1問目
平面OAB上の任意の点Dは
 s(-1, 1, 3)+t(2, 1, -3)=(-s+2t, s+t, 3s-3t)
OA⊥CDより
 (-1, 1, 3)・(-s+2t-5, s+t-3, 3s-3t-5)=(s-2t+5)+(s+t-3)+3(3s-3t-5)
  =11s-10t-13=0 ・・・(i)
OB⊥CDより
 (2, 1, -3)・(-s+2t-5, s+t-3, 3s-3t-5)=2(-s+2t-5)+(s+t-3)−3(3s-3t-5)
  =-10s+14t+2=0 ・・・(ii)
(i)(ii) を解いて、
 s=3, t=2
このときの点Dが点Hであるので、
 (-s+2t, s+t, 3s-3t)=(1, 5, 3)  ・・・([4],[5],[6])

点Hに関して点Cと対称な点が点Iなので、
 2(1, 5, 3)−(5, 3, 5)=(-3, 7, 1) ・・・([7][8],[9],[10])

No.82340 - 2022/06/08(Wed) 23:53:18

Re: ベクトル / ヨッシー
2問目
(1)
OAOB=OA・OBcos∠AOB=3 ・・・[11]
(2)
OBOC=OB・OCcos∠BOC=1 ・・・[12]
(3)
OCOA=OC・OAcos∠COA=3/2 ・・・[13]/[14]
(4)
OD=(2/3)OA
OE=(1/3)OB+(2/3)OC
OF=(1/3)OC
より
OG=(1/3)(ODOEOF)
  =(2/9)OA+(1/9)OB+(1/3)OC
CGOGOC=(2/9)OA+(1/9)OB−(2/3)OC
|CG|^2=(4/81)OA^2+(1/81)OB^2+(4/9)OC^2+(4/81)OAOB−(4/27)OBOC−(8/27)OCOA
  =4/9+4/81+4/9+4/27−4/27−4/9=40/81
よって、
 CG=√(40/81)=2√10/9 ・・・[15]〜[18]

No.82341 - 2022/06/09(Thu) 00:42:02

Re: ベクトル / Sky
ありがとうございました!
理解できました!

No.82347 - 2022/06/09(Thu) 20:22:42
(No Subject) / ピースで目潰しパンチ
aを正の実数とする

√(a^2-x^2)<x-a^2 を満たす実数xの範囲を求めよ

y=√(a^2-x^2)とy=x-a^2の位置関係で調べようとしたのですが
y=√(a^2-x^2)が表す図形やa^2-x^2が負になるときがわかりません。それも含めて解説お願いいたします。

No.82328 - 2022/06/08(Wed) 00:32:21

Re: / X
y=√(a^2-x^2) (A)
より
y^2=a^2-x^2
x^2+y^2=a^2 (A)'
∴(A)は円(A)'のy≧0の部分です。

>>a^2-x^2が負になるときがわかりません。
不等式は両辺が実数のときにしか定義できませんので
a^2-x^2<0とはなりません。

No.82330 - 2022/06/08(Wed) 05:57:08

Re: / X
No.82330の内容を踏まえて図形的に考えます。

y=√(a^2-x^2) (A)
は点(a,0),(-a,0)を結ぶ線分
を直径とする上側の半円
y=x-a^2 (B)
は点(a^2,0)を通る傾きが正の直線
従って点(a,0)と点(a^2,0)の位置関係について
場合分けすればよいことが分かります。
∴条件である0<aに注意すると
(i)a^2<a、つまり0<a<1のとき
(A)と(B)との交点のx座標について
√(a^2-x^2)=x-a^2
これを解いて
x={a^2+a√(2-a^2)}/2
∴求めるxの値の範囲は
{a^2+a√(2-a^2)}/2<x≦a
(ii)a≦a^2、つまり1≦aのとき
(A)(B)のグラフから
√(a^2-x^2)≧x-a^2
∴問題の不等式を満たすxの値は存在しません。

以上から
0<a<1のとき {a^2+a√(2-a^2)}/2<x≦a
1≦aのとき 解なし

No.82331 - 2022/06/08(Wed) 06:54:24

Re: / X
ごめんなさい。No.82331に誤りがありましたので
直接修正しました。
再度ご覧下さい。

No.82335 - 2022/06/08(Wed) 17:47:05
(No Subject) / 藻
x+2y+3z=1とx^2+2y^2+3z^2=2を満たしながら実数x,y,zが動くときxの取りうる値の範囲を求めよ
No.82327 - 2022/06/08(Wed) 00:26:10

Re: / らすかる
2式からzを消去して整理すると(6x-1)^2+4(x+5y-1)^2=55なので
-√55≦6x-1≦√55
∴(1-√55)/6≦x≦(1+√55)/6
ちなみにx=(1-√55)/6となるときのy,zの値は
x+5y-1=0,x+2y+3z=1からy=z=(5+√55)/30、
x=(1+√55)/6となるときのy,zの値は
x+5y-1=0,x+2y+3z=1からy=z=(5-√55)/30

No.82329 - 2022/06/08(Wed) 04:51:44

Re: / 藻
どこから6x-1やx+5y-1がでてきたのでしょうか。
No.82358 - 2022/06/10(Fri) 18:41:54

Re: / らすかる
x^2+2y^2+3z^2=2
両辺を3倍
3x^2+6y^2+9z^2=6
9z^2=(3z)^2であり3z=1-x-2yなので
3x^2+6y^2+(1-x-2y)^2=6
展開して整理すると
4x^2+4xy+10y^2-2x-4y=5
(xの式)^2+(xとyの式)^2=(定数)
という形を目指します。
つまり4xyは(xとyの式)^2に含まれるようにします。
10y^2と4xyだと分数が出てきますので
まず両辺を10倍して
40x^2+40xy+100y^2-20x-40y=50
これで
(○+10y)^2の形が作れて40xyが含まれるようにするためには○=2x
(2x+10y)^2=4x^2+40xy+100y^2なので
36x^2+(2x+10y)^2-20x-40y=50
36x^2+4(x+5y)^2-20x-40y=50
○(x+5y)で-40yが出てくるようにすると○=-8
-8(x+5y)=-8x-40yなので
36x^2+4(x+5y)^2-12x-8(x+5y)=50
36x^2-12x+4(x+5y)^2-8(x+5y)=50
36x^2-12xを平方完成すると(6x-1)^2-1
4(x+5y)^2-8(x+5y)を平方完成すると{2(x+5y)-2}^2-4
よって
(6x-1)^2-1+{2(x+5y)-2}^2-4=50
∴(6x-1)^2+4(x+5y-1)^2=55
のように整理できます。

No.82360 - 2022/06/10(Fri) 20:48:09
(No Subject) / り
可能な限り計算過程を詳しくご教授願いますm(_ _)m
No.82322 - 2022/06/07(Tue) 21:54:23

Re: / けんけんぱ
次数の低い文字に着目して整理する、という因数分解の鉄則があります。
これにならうと

与式
=(b+c)a^2+(b^2+c^2+2bc)a+b^2c+bc^2
ここで、定数項はb^2c+bc^2=(b+c)bcだから
=(b+c)a^2+(b+c)^2a+b^2c+(b+c)bc
(b+c)でくくって
=(b+c){a^2+(b+c)a+bc}
=(b+c)(a+b)(a+c)
となり、カッコよくすれば
=(a+b)(b+c)(c+a)
となります

No.82324 - 2022/06/07(Tue) 22:17:42
不等式について / しょう
11行目の4小なりの下にイコールがついてるのはなぜなのでしょうか?
No.82316 - 2022/06/07(Tue) 18:08:57

Re: 不等式について / ヨッシー
4≦x<6 ではなく
(4以上の数)<x<6 です。
x=4 は解になりません。

No.82317 - 2022/06/07(Tue) 18:14:33

Re: 不等式について / IT
x>a+4 で、具体的にx=4,5 として、考えてみると良いと思います。 
No.82318 - 2022/06/07(Tue) 18:16:12

Re: 不等式について / しょう
> 4≦x<6 ではなく
> (4以上の数)<x<6 です。
> x=4 は解になりません。


4以上の数ならどうしてイコールがついてるのでしょうか?

No.82320 - 2022/06/07(Tue) 19:09:13

Re: 不等式について / ヨッシー
4も4以上の数ですから。
No.82325 - 2022/06/07(Tue) 22:20:43

Re: 不等式について / しょう
4も4以上の数なら整数の数は2つになってしまうんじゃないんですか?
No.82333 - 2022/06/08(Wed) 17:09:34

Re: 不等式について / ヨッシー
xが4以上ではなく、
○<x<6
↑ここに入る数が4以上と言っているのです。
 4<x<6
に整数は2つありますか?

No.82334 - 2022/06/08(Wed) 17:16:32

Re: 不等式について / しょう
その説明はわかるのですが問題とうまく結びつかないのです。
No.82336 - 2022/06/08(Wed) 17:47:12

Re: 不等式について / ヨッシー
 a+4<x<6
この範囲に、整数が1つだけ含まれるには、aはどんな範囲の
数であるべきか? という問題であることはわかりますか?
ただ1つ含まれる整数はx=5であり、そのためには
 a+4 は4以上5未満
つまり
 4≦a+4<5
4を含んでもいいことは、先刻から説明済みなので4以上。
5を含むと、今度はx=5も含まれなくなるので、未満です。
あとは各辺から4を引いて
 0≦a<1
です。

No.82337 - 2022/06/08(Wed) 17:55:45
不等式について / しょう
1-4の最後に4以下となってるのはなぜなのでしょうか?
No.82313 - 2022/06/07(Tue) 17:19:16

Re: 不等式について / ヨッシー
10/3<x<m を満たす整数xが存在しないためのmの範囲は?
と聞かれているのと同じです。
10/3 は3より少し大きいので、3以下の整数になることはありません。
mが大きい、例えば、10/3<x<10 とかだと、4,5,6などが含まれます。
mをどこまで小さくすれば、整数xが存在しないかを調べると、
結局は、4を含むかどうかということになります。
mが4より少しでも大きい 4.000001 とかだとx=4 が含まれます。
mが4より少しでも小さい、3.999999 だと、x=4は含まれません。
では、m=4 だとどうでしょうか?

No.82315 - 2022/06/07(Tue) 18:05:26

Re: 不等式について / しょう
m=4は含んでしまうんじゃないんですか??
No.82319 - 2022/06/07(Tue) 18:29:02

Re: 不等式について / ヨッシー
m=4 ということは
 10/3<x<4
ということです。
x=4 はこの範囲に入りますか?

No.82326 - 2022/06/07(Tue) 22:21:44
大学数学です。 / ゆうじん
この証明が分かりません。
特に不等式評価から与式が有界であることによって微分がe^z0になる点が分かりません。
ご教示ください。

No.82304 - 2022/06/06(Mon) 23:56:40

Re: 大学数学です。 / ast
> 与式が有界であることによって微分が
当該の式(これを与式って言い方するのは個人的には違和感ある)が s,t が十分に小さい時有界という意味は, "t,s→0 (あるいは同じことだが √(s^2+t^2)→0) のとき (分母)→0 かつ limsup が存在する" ということなので, そのためには (分子)→0 は必要条件, つまり |(e^(t+is)-1)-(t+is)| →0 ⇔ |(e^(t+is)-1)/(t+is)|→1 というようなことが「したがって」の一言で済まされていると考えられます.
# 厳密には ε-δ 論法で書くべきところだとは思いますが
# 「分数の形の極限で limit が存在してかつ (分母)→0 なら (分子)→0 が必要」のようなケースは
# 高校数学の範囲でも典型的な問題として既知だと思いますので, 深入りしません.

No.82312 - 2022/06/07(Tue) 16:41:36
画像の(4),(5)を解いて貰えないでしょうか。 / こうしん
画像の(4),(5)を解いて貰えないでしょうか。課題として出たのですが例題も少なく分かりませんでした。都合の着く友達もいないので、教えて欲しいです
No.82303 - 2022/06/06(Mon) 21:43:53
(No Subject) / あいかわ
すごくたすかりました!!!!!ありがとうございます!!!!!!!
No.82299 - 2022/06/06(Mon) 21:13:35

Re: / X
もう見ていないかもしれませんがごめんなさい。
最初の回答に不備がありましたので一旦削除し、
改めて回答を元のスレにアップしました。
再度ご覧下さい。

No.82301 - 2022/06/06(Mon) 21:33:29

Re: / あいかわ
> もう見ていないかもしれませんがごめんなさい。
> 最初の回答に不備がありましたので一旦削除し、
> 改めて回答を元のスレにアップしました。
> 再度ご覧下さい。

ありがとうございます!さっきの回答で私は満足していました。丁寧にありがとうございます。ありがたく今から考えさせていただきます!

No.82302 - 2022/06/06(Mon) 21:36:58
全22458件 [ ページ : << 1 ... 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 ... 1123 >> ]